Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292959

RESUMO

Zebrafish are an increasingly popular model to study spinal cord injury (SCI) regeneration. The transparency of larval zebrafish makes them ideal to study cellular processes in real time. Standardized approaches, including age of injury, are not readily available making comparisons of the results with other models challenging. In this study, we systematically examined the response to spinal cord transection of larval zebrafish at three different ages (3-7 days post fertilization or dpf) to determine whether the developmental complexity of the central nervous system affects the overall response to SCI. We then used imaging and behavioral analysis to evaluate whether differences existed based on the age of injury. All ages of larval zebrafish upregulated the required genes for glial bridge formation, ctgfa and gfap, at the site of injury, consistent with studies from adult zebrafish. Though all larval ages upregulated factors required to promote glial bridging, young larval zebrafish (3 dpf) were better able to regenerate axons independent of the glial bridge, unlike older zebrafish (7 dpf). Consistent with this data, locomotor experiments demonstrated that some swimming behavior occurs independent of glial bridge formation, further highlighting the need for standardization of this model and recovery assays. Overall, we found subtle cellular differences based on the age of transection in zebrafish, underlining the importance of considering age when designing experiments aimed at understanding regeneration.

2.
J Circadian Rhythms ; 18: 7, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33384723

RESUMO

Critical biological processes are under control of the circadian clock. Disruption of this clock, e.g. during aging, results in increased risk for development of chronic disease. Exercise is a protective intervention that elicits changes in both age and circadian pathologies, yet its role in regulating circadian gene expression in peripheral tissues is unknown. We hypothesized that voluntary wheel running would restore disrupted circadian rhythm in aged mice. We analyzed wheel running patterns and expression of circadian regulators in male and female C57Bl/6J mice in adult (~4 months) and old (~18 months) ages. As expected, young female mice ran further than male mice, and old mice ran significantly less than young mice. Older mice of both sexes had a delayed start time in activity which likely points to a disrupted diurnal running pattern and circadian disruption. Voluntary wheel running rescued some circadian dysfunction in older females. This effect was not present in older males, and whether this was due to low wheel running distance or circadian output is not clear and warrants a future study. Overall, we show that voluntary wheel running can rescue some circadian dysfunction in older female but not male mice; and these changes are tissue dependent. While voluntary running was not sufficient to fully rescue age-related changes in circadian rhythm, ongoing studies will determine if forced exercise (e.g. treadmill) and/or chrono-timed exercise can improve age-related cardiovascular, skeletal muscle, and circadian dysfunction.

3.
Cell ; 167(2): 419-432.e16, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693353

RESUMO

Redirecting T cells to attack cancer using engineered chimeric receptors provides powerful new therapeutic capabilities. However, the effectiveness of therapeutic T cells is constrained by the endogenous T cell response: certain facets of natural response programs can be toxic, whereas other responses, such as the ability to overcome tumor immunosuppression, are absent. Thus, the efficacy and safety of therapeutic cells could be improved if we could custom sculpt immune cell responses. Synthetic Notch (synNotch) receptors induce transcriptional activation in response to recognition of user-specified antigens. We show that synNotch receptors can be used to sculpt custom response programs in primary T cells: they can drive a la carte cytokine secretion profiles, biased T cell differentiation, and local delivery of non-native therapeutic payloads, such as antibodies, in response to antigen. SynNotch T cells can thus be used as a general platform to recognize and remodel local microenvironments associated with diverse diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Engenharia Celular , Neoplasias/terapia , Receptores Artificiais/imunologia , Receptores Notch/imunologia , Anticorpos/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Citotoxicidade Imunológica , Humanos , Imunoterapia/métodos , Ativação Linfocitária , Receptores Artificiais/genética , Receptores Notch/genética , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Células Th1/imunologia , Transcrição Gênica , Microambiente Tumoral
4.
Nat Chem Biol ; 12(9): 694-701, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27376691

RESUMO

The transcription factor T-box 16 (Tbx16, or Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. However, the mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic. We describe here the use of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identified 124 Tbx16-regulated genes that were expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis and somitogenesis. Unexpectedly, we observed that a loss of Tbx16 function precociously activated posterior hox genes in MPCs, and overexpression of a single posterior hox gene was sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs.


Assuntos
Genes Homeobox/genética , Mesoderma/metabolismo , Células-Tronco/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Mesoderma/citologia , Estrutura Molecular , Células-Tronco/citologia , Proteínas com Domínio T/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
Cell ; 164(4): 770-9, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26830879

RESUMO

T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach, however, is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here, we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen "bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/metabolismo , Animais , Antígenos CD19/metabolismo , Antígenos de Superfície/imunologia , Efeito Espectador , Comunicação Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Mesotelina , Camundongos , Receptores Notch/metabolismo
6.
ACS Chem Biol ; 10(6): 1466-75, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25781211

RESUMO

In addition to their cell-autonomous roles in mesoderm development, the zebrafish T-box transcription factors no tail a (ntla) and spadetail (spt/tbx16) are required for medial floor plate (MFP) formation. Posterior MFP cells are completely absent in zebrafish embryos lacking both Ntla and Spt function, and genetic mosaic analyses have shown that the two T-box genes promote MFP development in a non-cell-autonomous manner. On the basis of these observations, it has been proposed that Ntla/Spt-dependent mesoderm-derived signals are required for the induction of posterior but not anterior MFP cells. To investigate the mechanisms by which Ntla and Spt regulate MFP development, we have used photoactivatable caged morpholinos (cMOs) to silence these T-box genes with spatiotemporal control. We find that posterior MFP formation requires Ntla or Spt activity during early gastrulation, specifically in lateral margin-derived cells that converge toward the midline during epiboly and somitogenesis. Nodal signaling-dependent MFP specification is maintained in the absence of Ntla and Spt function; however, midline cells in ntla;spt morphants exhibit aberrant morphogenetic movements, resulting in their anterior mislocalization. Our findings indicate that Ntla and Spt do not differentially regulate MFP induction along the anterior-posterior axis; rather, the T-box genes act redundantly within margin-derived cells to promote the posterior extension of MFP progenitors.


Assuntos
Proteínas Fetais/genética , Sondas Moleculares/química , Morfolinos/química , Proteínas com Domínio T/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Embrião não Mamífero , Proteínas Fetais/química , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Luz , Mesoderma/embriologia , Mesoderma/metabolismo , Morfogênese/genética , Processos Fotoquímicos , Transdução de Sinais , Proteínas com Domínio T/química , Proteínas com Domínio T/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...