Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4739, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958756

RESUMO

More people globally depend on the water buffalo than any other domesticated species, and as the most closely related domesticated species to cattle they can provide important insights into the shared evolutionary basis of domestication. Here, we sequence the genomes of 79 water buffalo across seven breeds and compare patterns of between breed selective sweeps with those seen for 294 cattle genomes representing 13 global breeds. The genomic regions under selection between cattle breeds significantly overlap regions linked to stature in human genetic studies, with a disproportionate number of these loci also shown to be under selection between water buffalo breeds. Investigation of potential functional variants in the water buffalo genome identifies a rare example of convergent domestication down to the same mutation having independently occurred and been selected for across domesticated species. Cross-species comparisons of recent selective sweeps can consequently help identify and refine important loci linked to domestication.


Assuntos
Búfalos/genética , Bovinos/genética , Domesticação , Genoma/genética , Animais , Cruzamento , Búfalos/classificação , Bovinos/classificação , Evolução Molecular , Loci Gênicos/genética , Variação Genética , Fenótipo , Filogeografia , Seleção Genética
2.
J Dairy Sci ; 102(12): 11180-11192, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31587908

RESUMO

Enhancing micronutrient (i.e., mineral and vitamin) concentrations within milk and serum from dairy cows is important for both the health of the cow and the nutritive value of the milk for human consumption. However, a good understanding of the genetics underlying the micronutrient content in dairy cattle is needed to facilitate such enhancements through feeding or breeding practices. In this study, milk (n = 950) and serum (n = 766) samples were collected from Holstein-Friesian dairy cows (n = 479) on 19 occasions over a 59-mo period and analyzed for concentrations of important elements. Additionally, a subset of 256 milk samples was analyzed for concentrations of vitamin B12. Cows belonged to 2 genetic lines (average and highest genetic merit for milk fat plus protein yield) and were assigned to 1 of 2 diets based on either a by-product or homegrown ration. Univariate models accounting for repeated records were used to analyze element and vitamin B12 data and investigate the effect of genotype and feeding system as well as derive estimates of variance components and genetic parameters. Bivariate models were used to study correlations both within and between milk and serum. Only concentrations of Hg in milk were seen to be affected by genotype, with higher concentrations in cows with high genetic merit. In contrast, element concentrations were influenced by feeding system such that cows fed the homegrown diet had increased milk concentrations of Ca, Cu, I, Mn, Mo, P, and K and increased serum concentrations of Cd, Cu, Fe, Mo, and V. Cows on the by-product diet had increased milk concentrations of Mg, Se, and Na and increased serum concentrations of P and Se. Heritability (h2) estimates were obtained for 6 milk and 4 serum elements, including Mg (h2milk = 0.30), K (h2serum = 0.18), Ca (h2milk = 0.20; h2serum = 0.12), Mn (h2milk = 0.14), Cu (h2serum = 0.22), Zn (h2milk = 0.24), Se (h2milk = 0.15; h2serum = 0.10), and Mo (h2milk = 0.19). Significant estimates of repeatability were observed in all milk and serum quantity elements (Na, Mg, P, K, and Ca) as well as 5 milk and 7 serum trace elements. Only K in milk and serum was found to have a significant positive genetic and phenotypic correlation (0.52 and 0.22, respectively). Significant phenotypic associations were noted between milk and serum Ca (0.17), Mo (0.19), and Na (-0.79). Additional multivariate analyses between measures within sample type (i.e., milk or serum) revealed significant positive associations, both phenotypic and genetic, between some of the elements. In milk, Se was genetically correlated with Ca (0.63), Mg (0.59), Mn (0.40), P (0.53), and Zn (0.52), whereas in serum, V showed strong genetic associations with Cd (0.71), Ca (0.53), Mn (0.63), Mo (0.57), P (0.42), K (0.45), and Hg (-0.44). These results provide evidence that element concentrations in milk and blood of dairy cows are significantly influenced by both diet and genetics and demonstrate the potential for genetic selection and dietary manipulation to alter nutrient concentration to improve both cow health and the healthfulness of milk for human consumption.


Assuntos
Bovinos/genética , Leite/química , Animais , Cruzamento , Bovinos/sangue , Dieta/veterinária , Feminino , Testes Genéticos/veterinária , Lactação , Proteínas do Leite/análise , Minerais/análise , Valor Nutritivo , Oligoelementos/metabolismo , Vitamina B 12/análise
3.
J Anim Sci ; 97(1): 29-34, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30346552

RESUMO

The aim of this study was to investigate the effects of animal trait, breed combination, and climate on the expressed levels of heterosis in crossbreeding schemes using tropical cattle. A meta-analysis of 42 studies was carried out with 518 heterosis estimates. In total, 62.5% of estimates were found to be significantly different from zero, the majority of which (89.8%) were beneficial for the studied trait. Trait and breed combination were shown to have a significant effect on the size of heterosis (P < 0.001 and P = 0.044, respectively). However, climate did not have a significant effect. Health, longevity, and milk production traits showed the highest heterosis (31.84 ± 10.73%, 35.13 ± 14.35%, and 35.15 ± 3.29%, respectively), whereas fertility, growth, and maternal traits showed moderate heterosis (12.02 ± 4.10%, 12.25 ± 2.69%, and 15.69 ± 3.26%, respectively). Crosses between breeds from different types showed moderate to high heterosis ranging from 9.95 ± 4.53% to 19.53 ± 3.62%, whereas crosses between breeds from the same type did not express heterosis that was significantly different from zero. These results show that heterosis has significant and favorable impact on productivity of cattle farming in tropical production systems, particularly in terms of fitness but also milk production traits.


Assuntos
Bovinos/genética , Fertilidade/genética , Vigor Híbrido , Leite/metabolismo , Animais , Clima , Feminino , Hibridização Genética , Longevidade , Masculino , Fenótipo
4.
J Dairy Sci ; 101(11): 10248-10258, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30172405

RESUMO

Previous work has highlighted that immune-associated (IA) traits measurable in blood are associated with health, productivity, and reproduction in dairy cows. The aim of the present study was to determine relationships between IA traits measured in blood serum and those simultaneously measured in milk as well as their association with disease phenotypes. All animals were Holstein-Friesian cows from the Langhill research herd (n = 546) housed at the SRUC Dairy Research Centre in Scotland. Milk and serum samples were collected on 20 separate occasions between July 2010 and March 2015 and analyzed by ELISA for haptoglobin (Hp), tumor necrosis factor-α (TNF-α), and natural antibodies binding keyhole limpet hemocyanin (NAbKLH) and lipopolysaccharide (NAbLPS). Data were analyzed using mixed linear models that included pedigree information. Analyses revealed positive phenotypic correlations between milk and serum NAb (0.59 ≤ r ≤ 0.77), Hp (r = 0.37), and TNF-α (r = 0.12). Milk and serum NAb were also found to have a strong genetic correlation (0.81 ≤ r ≤ 0.94) and were genetically correlated with cow lameness (0.66 and 0.79 for milk NAbKLH and serum NAbLPS, respectively). Clinical mastitis was found to be phenotypically correlated with both milk and serum Hp (0.09 ≤ r ≤ 0.23). Serum Hp was also strongly genetically correlated with other cellular IA traits such as percent NKp46+ (a natural killer cell marker; 0.35) and percent peripheral blood mononuclear cells (PBMC; -0.90). Similarly, genetic correlations were found to exist between serum TNF-α and percent NKp46+ (0.22), percent PBMC (0.41), and percent lymphocytes (0.47). Excluding serum Hp, all milk and serum IA traits were repeatable, ranging from 0.11 (milk Hp) to 0.43 (serum NAbLPS). Between-animal variation was highest in milk and serum NAb (0.34-0.43) and significant estimates of heritability were also observed in milk and serum NAb (0.17-0.37). Our findings show that certain IA traits, such as NAbKLH and NAbLPS, found in milk and serum are strongly correlated and highlight the potential of using routinely collected milk samples as a less invasive and cost-effective source of informative data for predictive modeling of animal IA traits.


Assuntos
Anticorpos/análise , Bovinos/imunologia , Leite/imunologia , Reprodução , Animais , Bovinos/sangue , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Hemocianinas/imunologia , Lactação , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/imunologia , Fenótipo , Escócia
6.
J Dairy Sci ; 100(4): 2850-2862, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28131586

RESUMO

Data collected from an experimental Holstein-Friesian research herd were used to determine genetic and phenotypic parameters of innate and adaptive cellular immune-associated traits. Relationships between immune-associated traits and production, health, and fertility traits were also investigated. Repeated blood leukocyte records were analyzed in 546 cows for 9 cellular immune-associated traits, including percent T cell subsets, B cells, NK cells, and granulocytes. Variance components were estimated by univariate analysis. Heritability estimates were obtained for all 9 traits, the highest of which were observed in the T cell subsets percent CD4+, percent CD8+, CD4+:CD8+ ratio, and percent NKp46+ cells (0.46, 0.41, 0.43 and 0.42, respectively), with between-individual variation accounting for 59 to 81% of total phenotypic variance. Associations between immune-associated traits and production, health, and fertility traits were investigated with bivariate analyses. Strong genetic correlations were observed between percent NKp46+ and stillbirth rate (0.61), and lameness episodes and percent CD8+ (-0.51). Regarding production traits, the strongest relationships were between CD4+:CD8+ ratio and weight phenotypes (-0.52 for live weight; -0.51 for empty body weight). Associations between feed conversion traits and immune-associated traits were also observed. Our results provide evidence that cellular immune-associated traits are heritable and repeatable, and the noticeable variation between animals would permit selection for altered trait values, particularly in the case of the T cell subsets. The associations we observed between immune-associated, health, fertility, and production traits suggest that genetic selection for cellular immune-associated traits could provide a useful tool in improving animal health, fitness, and fertility.


Assuntos
Fertilidade/genética , Leite , Animais , Bovinos , Feminino , Lactação/genética , Fenótipo
7.
J Dairy Sci ; 100(3): 2240-2257, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28109597

RESUMO

A key goal for livestock science is to ensure that food production meets the needs of an increasing global population. Climate change may heighten this challenge through increases in mean temperatures and in the intensity, duration, and spatial distribution of extreme weather events, such as heat waves. Under high ambient temperatures, livestock are expected to decrease dry matter intake (DMI) to reduce their metabolic heat production. High yielding dairy cows require high DMI to support their levels of milk production, but this may increase susceptibility to heat stress. Here, we tested how feed intake and the rate of converting dry matter to milk (feed efficiency, FE) vary in response to natural fluctuations in weather conditions in a housed experimental herd of lactating Holstein Friesians in the United Kingdom. Cows belonged to 2 lines: those selected for high genetic merit for milk traits (select) and those at the UK average (control). We predicted that (1) feed intake and FE would vary with an index of temperature and humidity (THI), wind speed, and the number of hours of sunshine, and that (2) the effects of (1) would depend on the cows' genetic merit. Animals received a mixed ration, available ad libitum, from automatic feed measurement gates. Using >73,000 daily feed intake and FE records from 328 cows over 8 yr, we found that select cows produced more fat- and protein-corrected milk, and had higher DMI and FE than controls. Cows of both lines decreased DMI and fat- and protein-corrected milk but, importantly, increased FE as THI increased. This suggests that improvements in the efficiency of converting feed to milk may partially offset the costs of reduced milk yield owing to a warmer climate, at least under conditions of mild heat stress. The rate of increase in FE with THI was steeper in select cows than in controls, which raises the possibility that select cows use more effective coping tactics. This is, to our knowledge, the first longitudinal study on the effects of weather on FE. Understanding how weather influences feed intake and efficiency can help us to develop management and selection practices that optimize productivity under unfavorable weather conditions. This will be an important aspect of climate resilience in future.


Assuntos
Ração Animal , Lactação , Animais , Bovinos , Clima , Mudança Climática , Dieta/veterinária , Feminino , Estudos Longitudinais , Leite/metabolismo , Tempo (Meteorologia)
8.
J Dairy Sci ; 100(1): 679-690, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27837981

RESUMO

The effect of subclinical paratuberculosis (or Johne's disease) risk status on performance, health, and fertility was studied in 58,096 UK Holstein-Friesian cows with 156,837 lactations across lactations 1 to 3. Low-, medium-, and high-risk group categories were allocated to cows determined by a minimum of 4 ELISA milk tests taken at any time during their lactating life. Lactation curves of daily milk, protein, and fat yields and protein and fat percentage, together with loge-transformed somatic cell count, were estimated using a random regression model to quantify differences between risk groups. The effect of subclinical paratuberculosis risk groups on fertility, lactation-average somatic cell count, and mastitis were analyzed using linear regression fitting risk group as a fixed effect. Milk yield losses associated with high-risk cows compared with low-risk cows in lactations 1, 2, and 3 for mean daily yield were 0.34, 1.05, and 1.61kg; likewise, accumulated 305-d yields were 103, 316, and 485kg, respectively. The total loss was 904kg over the first 3 lactations. Protein and fat yield losses associated with high-risk cows were significant, but primarily a feature of decreasing milk yield. Similar trends were observed for both test-day and lactation-average somatic cell count measures with higher somatic cell counts from medium- and high-risk cows compared with low-risk cows, and differences were in almost all cases significant. Likewise, mastitis incidence was significantly higher in high-risk cows compared with low-risk cows in lactations 2 and 3. Whereas the few significant differences between risk groups among fertility traits were inconsistent with no clear trend. These results are expected to be conservative, as some animals that were considered negative may become positive after the timeframe of this study, particularly if the animal was tested when relatively young. However, the magnitude of milk yield losses together with higher somatic cell counts and an increase in mastitis incidence should motivate farmers to implement the appropriate control measures to reduce the spread of the disease.


Assuntos
Lactação , Paratuberculose , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Contagem de Células/veterinária , Feminino , Leite/metabolismo
9.
PLoS One ; 8(6): e65766, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776543

RESUMO

Detailed biological analyses (e.g. epidemiological, genetic) of animal health and fitness in the field are limited by the lack of large-scale recording of individual animals. An alternative approach is to identify immune traits that are associated with these important functions and can be subsequently used in more detailed studies. We have used an experimental dairy herd with uniquely dense phenotypic data to identify a range of potentially useful immune traits correlated with enhanced (or depressed) health and fitness. Blood samples from 248 dairy cows were collected at two-monthly intervals over a 10-month period and analysed for a number of immune traits, including levels of serum proteins associated with the innate immune response and circulating leukocyte populations. Immune measures were matched to individual cow records related to productivity, fertility and disease. Correlations between traits were calculated using bivariate analyses based on animal repeatability and random regression models with a Bonferroni correction to account for multiple testing. A number of significant correlations were found between immune traits and other recorded traits including: CD4(+):CD8(+) T lymphocyte ratio and subclinical mastitis; % CD8(+) lymphocytes and fertility; % CD335(+) natural killer cells and lameness episodes; and serum haptoglobin levels and clinical mastitis. Importantly these traits were not associated with reduced productivity and, in the case of cellular immune traits, were highly repeatable. Moreover these immune traits displayed significant between-animal variation suggesting that they may be altered by genetic selection. This study represents the largest simultaneous analysis of multiple immune traits in dairy cattle to-date and demonstrates that a number of immune traits are associated with health events. These traits represent useful selection markers for future programmes aimed at improving animal health and fitness.


Assuntos
Bovinos/crescimento & desenvolvimento , Bovinos/imunologia , Indústria de Laticínios/métodos , Fertilidade/fisiologia , Nível de Saúde , Imunidade Inata/imunologia , Animais , Anticorpos Monoclonais , Relação CD4-CD8/veterinária , Bovinos/sangue , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Citometria de Fluxo/veterinária , Leucócitos/imunologia , Escócia
10.
Genet Sel Evol ; 44: 23, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22839757

RESUMO

BACKGROUND: The focus in dairy cattle breeding is gradually shifting from production to functional traits and genetic parameters of calving traits are estimated more frequently. However, across countries, various statistical models are used to estimate these parameters. This study evaluates different models for calving ease and stillbirth in United Kingdom Holstein-Friesian cattle. METHODS: Data from first and later parity records were used. Genetic parameters for calving ease, stillbirth and gestation length were estimated using the restricted maximum likelihood method, considering different models i.e. sire (-maternal grandsire), animal, univariate and bivariate models. Gestation length was fitted as a correlated indicator trait and, for all three traits, genetic correlations between first and later parities were estimated. Potential bias in estimates was avoided by acknowledging a possible environmental direct-maternal covariance. The total heritable variance was estimated for each trait to discuss its theoretical importance and practical value. Prediction error variances and accuracies were calculated to compare the models. RESULTS AND DISCUSSION: On average, direct and maternal heritabilities for calving traits were low, except for direct gestation length. Calving ease in first parity had a significant and negative direct-maternal genetic correlation. Gestation length was maternally correlated to stillbirth in first parity and directly correlated to calving ease in later parities. Multi-trait models had a slightly greater predictive ability than univariate models, especially for the lowly heritable traits. The computation time needed for sire (-maternal grandsire) models was much smaller than for animal models with only small differences in accuracy. The sire (-maternal grandsire) model was robust when additional genetic components were estimated, while the equivalent animal model had difficulties reaching convergence. CONCLUSIONS: For the evaluation of calving traits, multi-trait models show a slight advantage over univariate models. Extended sire models (-maternal grandsire) are more practical and robust than animal models. Estimated genetic parameters for calving traits of UK Holstein cattle are consistent with literature. Calculating an aggregate estimated breeding value including direct and maternal values should encourage breeders to consider both direct and maternal effects in selection decisions.


Assuntos
Bovinos/genética , Modelos Genéticos , Modelos Estatísticos , Característica Quantitativa Herdável , Animais , Cruzamento , Bovinos/fisiologia , Feminino , Masculino , Linhagem , Gravidez , Reino Unido
11.
Genet Sel Evol ; 37(3): 291-313, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15823237

RESUMO

The composition of the genome after introgression of a marker gene from a donor to a recipient breed was studied using analytical and simulation methods. Theoretical predictions of proportional genomic contributions, including donor linkage drag, from ancestors used at each generation of crossing after an introgression programme agreed closely with simulated results. The obligate drag, the donor genome surrounding the target locus that cannot be removed by subsequent selection, was also studied. It was shown that the number of backcross generations and the length of the chromosome affected proportional genomic contributions to the carrier chromosomes. Population structure had no significant effect on ancestral contributions and linkage drag but it did have an effect on the obligate drag whereby larger offspring groups resulted in smaller obligate drag. The implications for an introgression programme of the number of backcross generations, the population structure and the carrier chromosome length are discussed. The equations derived describing contributions to the genome from individuals from a given generation provide a framework to predict the genomic composition of a population after the introgression of a favourable donor allele. These ancestral contributions can be assigned a value and therefore allow the prediction of genetic lag.


Assuntos
Animais Domésticos/genética , Genômica , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...