Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 16(7): e1008610, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716926

RESUMO

Two-component systems and phosphorelays play central roles in the ability of bacteria to rapidly respond to changing environments. In E. coli and related enterobacteria, the complex Rcs phosphorelay is a critical player in the bacterial response to antimicrobial peptides, beta-lactam antibiotics, and other disruptions at the cell surface. The Rcs system is unusual in that an inner membrane protein, IgaA, is essential due to its negative regulation of the RcsC/RcsD/RcsB phosphorelay. While it is known that IgaA transduces signals from the outer membrane lipoprotein RcsF, how it interacts with the phosphorelay has remained unknown. Here we performed in vivo interaction assays and genetic dissection of the critical proteins and found that IgaA interacts with the phosphorelay protein RcsD, and that this interaction is necessary for regulation. Interactions between IgaA and RcsD within their respective periplasmic domains of these two proteins anchor repression of signaling. However, the signaling response depends on a second interaction between cytoplasmic loop 1 of IgaA and a truncated Per-Arndt-Sim (PAS-like) domain in RcsD. A single point mutation in the PAS-like domain increased interactions between the two proteins and blocked induction of the phosphorelay. IgaA may regulate RcsC, the histidine kinase that initiates phosphotransfer through the phosphorelay, indirectly, via its contacts with RcsD. Unlike RcsD, and unlike many other histidine kinases, the periplasmic domain of RcsC is dispensable for the response to signals that induce the Rcs phosphorelay system. The multiple contacts between IgaA and RcsD constitute a poised sensing system, preventing potentially toxic over-activation of this phosphorelay while enabling it to rapidly and quantitatively respond to signals.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Fosfoproteínas/genética , Fosfotransferases/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Complexos Multienzimáticos/genética , Fosforilação/genética , Transporte Proteico/genética , Salmonella typhimurium/genética , Transdução de Sinais/genética
2.
Viruses ; 9(12)2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29258203

RESUMO

In the tailed bacteriophages, DNA is packaged into spherical procapsids, leading to expansion into angular, thin-walled mature capsids. In many cases, this maturation is accompanied by cleavage of the major capsid protein (CP) and other capsid-associated proteins, including the scaffolding protein (SP) that serves as a chaperone for the assembly process. Staphylococcus aureus bacteriophage 80α is capable of high frequency mobilization of mobile genetic elements called S. aureus pathogenicity islands (SaPIs), such as SaPI1. SaPI1 redirects the assembly pathway of 80α to form capsids that are smaller than those normally made by the phage alone. Both CP and SP of 80α are N-terminally processed by a host-encoded protease, Prp. We have analyzed phage mutants that express pre-cleaved or uncleavable versions of CP or SP, and show that the N-terminal sequence in SP is absolutely required for assembly, but does not need to be cleaved in order to produce viable capsids. Mutants with pre-cleaved or uncleavable CP display normal viability. We have used cryo-EM to solve the structures of mature capsids from an 80α mutant expressing uncleavable CP, and from wildtype SaPI1. Comparisons with structures of 80α and SaPI1 procapsids show that capsid maturation involves major conformational changes in CP, consistent with a release of the CP N-arm by SP. The hexamers reorganize during maturation to accommodate the different environments in the 80α and SaPI1 capsids.


Assuntos
Capsídeo/metabolismo , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia , Montagem de Vírus , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Viabilidade Microbiana , Mutação , Conformação Proteica , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/ultraestrutura
3.
Elife ; 62017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984245

RESUMO

Staphylococcus aureus pathogenicity islands (SaPIs), such as SaPI1, exploit specific helper bacteriophages, like 80α, for their high frequency mobilization, a process termed 'molecular piracy'. SaPI1 redirects the helper's assembly pathway to form small capsids that can only accommodate the smaller SaPI1 genome, but not a complete phage genome. SaPI1 encodes two proteins, CpmA and CpmB, that are responsible for this size redirection. We have determined the structures of the 80α and SaPI1 procapsids to near-atomic resolution by cryo-electron microscopy, and show that CpmB competes with the 80α scaffolding protein (SP) for a binding site on the capsid protein (CP), and works by altering the angle between capsomers. We probed these interactions genetically and identified second-site suppressors of lethal mutations in SP. Our structures show, for the first time, the detailed interactions between SP and CP in a bacteriophage, providing unique insights into macromolecular assembly processes.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Capsídeo/metabolismo , Ilhas Genômicas , Staphylococcus aureus/genética , Staphylococcus aureus/virologia , Proteínas Virais/metabolismo , Montagem de Vírus , Proteínas de Bactérias/genética , Bacteriófagos/ultraestrutura , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Mapeamento de Interação de Proteínas , Proteínas Virais/genética
4.
Mol Microbiol ; 104(3): 520-532, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28187498

RESUMO

In Firmicutes and related bacteria, ribosomal large subunit protein L27 is encoded with a conserved N-terminal extension that is removed to expose residues critical for ribosome function. Bacteria encoding L27 with this N-terminal extension also encode a sequence-specific cysteine protease, Prp, which carries out this cleavage. In this work, we demonstrate that L27 variants with an un-cleavable N-terminal extension, or lacking the extension (pre-cleaved), are unable to complement an L27 deletion in Staphylococcus aureus. This indicates that N-terminal processing of L27 is not only essential but possibly has a regulatory role. Prp represents a new clade of previously uncharacterized cysteine proteases, and the dependence of S. aureus on L27 cleavage by Prp validates the enzyme as a target for potential antibiotic development. To better understand the mechanism of Prp activity, we analyzed Prp enzyme kinetics and substrate preference using a fluorogenic peptide cleavage assay. Molecular modeling and site-directed mutagenesis implicate several residues around the active site in catalysis and substrate binding, and support a structural model in which rearrangement of a flexible loop upon binding of the correct peptide substrate is required for the active site to assume the proper conformation. These findings lay the foundation for the development of antimicrobials that target this novel, essential pathway.


Assuntos
Cisteína Proteases/química , Cisteína Proteases/metabolismo , Proteínas Ribossômicas/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Cisteína Proteases/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
5.
Mol Microbiol ; 95(2): 258-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25388641

RESUMO

Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N-terminus, which protrudes into the peptidyl transferase center. In this report, we demonstrate that L27 in Staphylococcus aureus and other Firmicutes is encoded with an N-terminal extension that is not present in most Gram-negative organisms and is absent from mature ribosomes. We have identified a cysteine protease, conserved among bacteria containing the L27 N-terminal extension, which performs post-translational cleavage of L27. Ribosomal biology in eubacteria has largely been studied in the Gram-negative bacterium Escherichia coli; our findings indicate that there are aspects of the basic biology of the ribosome in S. aureus and other related bacteria that differ substantially from that of the E. coli ribosome. This research lays the foundation for the development of new therapeutic approaches that target this novel pathway.


Assuntos
Cisteína Proteases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Cisteína Proteases/genética , Escherichia coli/genética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/genética
6.
Virology ; 434(2): 242-50, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22980502

RESUMO

80α is a temperate, double-stranded DNA bacteriophage of Staphylococcus aureus that can act as a "helper" for the mobilization of S. aureus pathogenicity islands (SaPIs), including SaPI1. When SaPI1 is mobilized by 80α, the SaPI genomes are packaged into capsids that are composed of phage proteins, but that are smaller than those normally formed by the phage. This size determination is dependent on SaPI1 proteins CpmA and CpmB. Here, we show that co-expression of the 80α capsid and scaffolding proteins in S. aureus, but not in E. coli, leads to the formation of procapsid-related structures, suggesting that a host co-factor is required for assembly. The capsid and scaffolding proteins also undergo normal N-terminal processing upon expression in S. aureus, implicating a host protease. We also find that SaPI1 proteins CpmA and CpmB promote the formation of small capsids upon co-expression with 80α capsid and scaffolding proteins in S. aureus.


Assuntos
Genética Microbiana/métodos , Biologia Molecular/métodos , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia , Virologia/métodos , Montagem de Vírus , Proteínas de Bactérias/metabolismo , Capsídeo/metabolismo , Escherichia coli/genética , Expressão Gênica , Ilhas Genômicas , Humanos , Multimerização Proteica , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética
7.
Virology ; 432(2): 277-82, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22709958

RESUMO

SaPIs are molecular pirates that exploit helper bacteriophages for their own high frequency mobilization. One striking feature of helper exploitation by SaPIs is redirection of the phage capsid assembly pathway to produce smaller phage-like particles with T=4 icosahedral symmetry rather than T=7 bacteriophage capsids. Small capsids can accommodate the SaPI genome but not that of the helper phage, leading to interference with helper propagation. Previous studies identified two proteins encoded by the prototype element SaPI1, gp6 and gp7, in SaPI1 procapsids but not in mature SaPI1 particles. Dimers of gp6 form an internal scaffold, aiding fidelity of small capsid assembly. Here we show that both SaPI1 gp6 (CpmB) and gp7 (CpmA) are necessary and sufficient to direct small capsid formation. Surprisingly, failure to form small capsids did not restore wild-type levels of helper phage growth, suggesting an additional role for these SaPI1 proteins in phage interference.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Ilhas Genômicas/genética , Fagos de Staphylococcus/metabolismo , Staphylococcus aureus/virologia , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Vírus Auxiliares/química , Vírus Auxiliares/genética , Fagos de Staphylococcus/química , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...