Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38520167

RESUMO

Coriariaceae are a small plant family of 14-17 species and subspecies that currently have a global but disjunct distribution. All species can form root nodules in symbiosis with diazotrophic Frankia cluster-2 strains, which form the earliest divergent symbiotic clade within this bacterial genus. Studies on Frankia cluster-2 mostly have focused on strains occurring in the northern hemisphere. Except for one strain from Papua New Guinea, namely Candidatus Frankia meridionalis Cppng1, no complete genome of Frankia associated with Coriaria occurring in the southern hemisphere has been published thus far, yet the majority of the Coriariaceae species occur here. We present field sampling data of novel Frankia cluster-2 strains, representing two novel species, which are associated with Coriaria arborea and Coriaria sarmentosa in New Zealand, and with Coriaria ruscifolia in Patagonia (Argentina), in addition to identifying Ca. F. meridionalis present in New Zealand. The novel Frankia species were found to be closely related to both Ca. F. meridionalis, and a Frankia species occurring in the Philippines, Taiwan, and Japan. Our data suggest that the different Frankia cluster-2 species diverged early after becoming symbiotic circa 100 million years ago.


Assuntos
Frankia , Filogenia , Simbiose , Frankia/genética , Frankia/classificação , Genoma Bacteriano , Nova Zelândia , Argentina , Filogeografia , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , DNA Bacteriano/genética
2.
Plant Commun ; 5(1): 100671, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553834

RESUMO

Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.


Assuntos
Fabaceae , Simbiose , Simbiose/genética , Filogenia , Nitrogênio , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Fabaceae/microbiologia
3.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33571359

RESUMO

The effects of tillage on soil structure, physiology and microbiota structure were studied in a long-term field experiment, with side-to-side plots, established to compare effects of conventional tillage (CT) vs no-till (NT) agriculture. After 27 years, part of the field under CT was switched to NT and vice versa. Soil texture, soil enzymatic profiles and the prokaryotic community structure (16S rRNA genes amplicon sequencing) were analyzed at two soil depths (0-5 and 5-10 cm) in samples taken 6, 18 and 30 months after switching tillage practices. Soil enzymatic activities were higher in NT than CT, and enzymatic profiles responded to the changes much earlier than the overall prokaryotic community structure. Beta diversity measurements of the prokaryotic community indicated that the levels of stratification observed in long-term NT soils were already recovered in the new NT soils 30 months after switching from CT to NT. Bacteria and Archaea OTUs that responded to NT were associated with coarse soil fraction, soil organic carbon and C cycle enzymes, while CT responders were related to fine soil fractions and S cycle enzymes. This study showed the potential of managing the soil prokaryotic community and soil health through changes in agricultural management practices.


Assuntos
Carbono , Solo , Agricultura , RNA Ribossômico 16S/genética , Microbiologia do Solo
4.
PLoS One ; 14(10): e0223149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600251

RESUMO

Mutualistic plant-microbe associations are widespread in natural ecosystems and have made major contributions throughout the evolutionary history of terrestrial plants. Amongst the most remarkable of these are the so-called root endosymbioses, resulting from the intracellular colonization of host tissues by either arbuscular mycorrhizal (AM) fungi or nitrogen-fixing bacteria that both provide key nutrients to the host in exchange for energy-rich photosynthates. Actinorhizal host plants, members of the Eurosid 1 clade, are able to associate with both AM fungi and nitrogen-fixing actinomycetes known as Frankia. Currently, little is known about the molecular signaling that allows these plants to recognize their fungal and bacterial partners. In this article, we describe the use of an in vivo Ca2+ reporter to identify symbiotic signaling responses to AM fungi in roots of both Casuarina glauca and Discaria trinervis, actinorhizal species with contrasting modes of Frankia colonization. This approach has revealed that, for both actinorhizal hosts, the short-chain chitin oligomer chitotetraose is able to mimic AM fungal exudates in activating the conserved symbiosis signaling pathway (CSSP) in epidermal root cells targeted by AM fungi. These results mirror findings in other AM host plants including legumes and the monocot rice. In addition, we show that chitotetraose is a more efficient elicitor of CSSP activation compared to AM fungal lipo-chitooligosaccharides. These findings reinforce the likely role of short-chain chitin oligomers during the initial stages of the AM association, and are discussed in relation to both our current knowledge about molecular signaling during Frankia recognition as well as the different microsymbiont root colonization mechanisms employed by actinorhizal hosts.


Assuntos
Fagales/genética , Frankia/genética , Oligossacarídeos/genética , Simbiose/genética , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Fagales/crescimento & desenvolvimento , Fagales/microbiologia , Frankia/crescimento & desenvolvimento , Frankia/metabolismo , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Fixação de Nitrogênio/genética , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Transdução de Sinais/genética
5.
J Basic Microbiol ; 59(5): 487-495, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30768729

RESUMO

This study tested the solubilization of phosphorus by five actinobacterial strains in liquid media containing Ca3 PO4 ; AlPO4 or FePO4 as the sole phosphate source, and discusses the possible mechanisms involved in this process. P solubilization by different strains was accompanied by a significant drop in pH from 7.0 to 2.15-5.0 after 14 days. The efficiency of different strains depended on the P-source. Streptomyces spp. MM140 and MM141 were the most efficient in solubilizing Ca3 PO4 , MM136, and MM141 were the most efficient in solubilizing AlPO4 , while all strains were equally efficient in solubilizing FePO4 . Gluconic, oxalic, citric, malic, succinic, formic, and acetic acid were detected in the medium with Ca3 PO4 , while all except acetic acid were detected in the media with FePO4 or AlPO4 . Although we did not use an organic source of phosphorus in the media, all strains produced acid and alkaline phosphatase. It is concluded from this study that actinobacteria produced multiple organic acids followed by a decrease in the pH to solubilize phosphate salts. As well as producing phosphatase, these microorganisms were found to have different ways of making P available, suggesting an ecological advantage as they form part of soil microbiomes important for plants.


Assuntos
Actinobacteria/metabolismo , Fosfatos/metabolismo , Actinobacteria/classificação , Disponibilidade Biológica , Ácidos Carboxílicos/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Fosfatos/farmacocinética , Monoéster Fosfórico Hidrolases/metabolismo , Microbiologia do Solo , Especificidade da Espécie , Especificidade por Substrato
6.
New Phytol ; 219(3): 1018-1030, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29790172

RESUMO

Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia.


Assuntos
Frankia/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Vegetais/microbiologia , Rhamnaceae/genética , Rhamnaceae/microbiologia , Subtilisinas/genética , Contagem de Colônia Microbiana , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/microbiologia , Subtilisinas/metabolismo
7.
Science ; 361(6398)2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29794220

RESUMO

The root nodule symbiosis of plants with nitrogen-fixing bacteria affects global nitrogen cycles and food production but is restricted to a subset of genera within a single clade of flowering plants. To explore the genetic basis for this scattered occurrence, we sequenced the genomes of 10 plant species covering the diversity of nodule morphotypes, bacterial symbionts, and infection strategies. In a genome-wide comparative analysis of a total of 37 plant species, we discovered signatures of multiple independent loss-of-function events in the indispensable symbiotic regulator NODULE INCEPTION in 10 of 13 genomes of nonnodulating species within this clade. The discovery that multiple independent losses shaped the present-day distribution of nitrogen-fixing root nodule symbiosis in plants reveals a phylogenetically wider distribution in evolutionary history and a so-far-underestimated selection pressure against this symbiosis.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fabaceae , Fixação de Nitrogênio , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Evolução Molecular , Fabaceae/classificação , Fabaceae/genética , Fabaceae/microbiologia , Genoma de Planta , Genômica , Filogenia
8.
Rev Argent Microbiol ; 47(2): 132-7, 2015.
Artigo em Espanhol | MEDLINE | ID: mdl-26054776

RESUMO

In contrast to rhizobia-legume symbiosis, the specificity for root colonization by pseudomonads seems to be less strict. However, several studies about bacterial diversity in the rhizosphere highlight the influence of plant species on the selective enrichment of certain microorganisms from the bulk soil community. In order to evaluate the effect that different crops have on the structure of pseudomonad community on the root surface, we performed plant trap experiments, using surface-disinfected maize, wheat or soybean seeds that were sown in pots containing the same pristine soil as substrate. Rhizoplane suspensions were plated on a selective medium for Pseudomonas, and pooled colonies served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA. PCR-RFLP profiles were grouped by plant species, and were distinguished from those of bulk soil samples. Partial sequencing of 16S rDNA genes of some representative colonies of Pseudomonas confirmed the selective enrichment of distinctive genotypes in the rhizoplane of each plant species. These results support the idea that the root systems of agricultural crops such as soybean, maize and wheat, select differential sets of pseudomonads from the native microbial repertoire inhabiting the bulk soil.


Assuntos
Raízes de Plantas/microbiologia , Pseudomonas/isolamento & purificação , Microbiologia do Solo , Argentina , Biodiversidade , Genes Bacterianos , Genótipo , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Pseudomonas/genética , Sementes/microbiologia , Seleção Genética , Glycine max/microbiologia , Especificidade da Espécie , Triticum/microbiologia , Zea mays/microbiologia
9.
Rev. argent. microbiol ; 47(2): 132-137, June 2015.
Artigo em Espanhol | LILACS | ID: biblio-1147254

RESUMO

En contraste con la simbiosis entre rizobios y leguminosas, la especificidad de las Pseudomonas en la colonización radicular parece menos estricta. Sin embargo, estudios sobre la diversidad bacteriana del nicho rizosférico resaltan la influencia de la especie vegetal en la selección específica de ciertos microorganismos a partir de la flora residente del suelo. Para evaluar el efecto que los cultivos extensivos de nuestro país tienen sobre la estructura de las comunidades de Pseudomonas, se realizaron experimentos con plantas trampa, partiendo de semillas de trigo, maíz y soja desinfectadas superficialmente y sembradas en un mismo suelo prístino. A partir de las suspensiones representativas de la microflora del rizoplano, se realizaron recuentos en placa en medio selectivo para Pseudomonas. El conjunto de colonias originado a partir de los distintos rizoplanos se utilizó como fuente de ADN para analizar la estructura de comunidad a través del perfil de restricción de amplicones de los genes oprF y gacA. El análisis comparativo de estos perfiles agrupó a las muestras por especie de planta y las distinguió del patrón obtenido a partir del suelo prístino. La secuenciación parcial del gen 16S ADNr de aislamientos bacterianos representativos confirmó la existencia de genotipos enriquecidos diferencialmente en el rizoplano de cada especie vegetal. Estos resultados apoyan la hipótesis de la existencia de mecanismos de selección específica de estirpes de Pseudomonas a partir de la flora nativa del suelo en la interacción cooperativa entre estas PGPR y las raíces de diferentes cultivos como trigo, soja y maíz


In contrast to rhizobia-legume symbiosis, the specificity for root colonization by pseudomonads seems to be less strict. However, several studies about bacterial diversity in the rhizosphere highlight the influence of plant species on the selective enrichment of certain microorganisms from the bulk soil community. In order to evaluate the effect that different crops have on the structure of pseudomonad community on the root surface, we performed plant trap experiments, using surface-disinfected maize, wheat or soybean seeds that were sown in pots containing the same pristine soil as substrate. Rhizoplane suspensions were plated on a selective medium for Pseudomonas, and pooled colonies served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA. PCR-RFLP profiles were grouped by plant species, and were distinguished from those of bulk soil samples. Partial sequencing of 16S rDNA genes of some representative colonies of Pseudomonas confirmed the selective enrichment of distinctive genotypes in the rhizoplane of each plant species. These results support the idea that the root systems of agricultural crops such as soybean, maize and wheat, select differential sets of pseudomonads from the native microbial repertoire inhabiting the bulk soil


Assuntos
Pseudomonas/crescimento & desenvolvimento , Sementes/microbiologia , DNA Ribossômico/análise , Rizosfera , Genótipo
10.
Environ Microbiol ; 17(3): 678-88, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24803003

RESUMO

The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on ß-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower ß-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of ß-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity.


Assuntos
Produtos Agrícolas/microbiologia , Glycine max/microbiologia , Consórcios Microbianos/genética , Microbiologia do Solo , Acidobacteria/classificação , Acidobacteria/genética , Agricultura , Sequência de Bases , Biodiversidade , Meio Ambiente , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Verrucomicrobia/classificação , Verrucomicrobia/genética
11.
Int J Syst Evol Microbiol ; 64(Pt 6): 2003-2008, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623656

RESUMO

Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain.


Assuntos
Burkholderia/classificação , Filogenia , Microbiologia do Solo , Agricultura , Argentina , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Girase/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Genótipo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
J Biosci ; 38(4): 719-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24287651

RESUMO

Among the Actinobacteria, the genus Frankia is well known for its facultative lifestyle as a plant symbiont of dicotyledonous plants and as a free-living soil dweller. Frankia sp. strains are generally classified into one of four major phylogenetic groups that have distinctive plant host ranges. Our understanding of these bacteria has been greatly facilitated by the availability of the first three complete genome sequences, which suggested a correlation between genome size and plant host range. Since that first report, eight more Frankia genomes have been sequenced. Representatives from all four lineages have been sequenced to provide vital baseline information for genomic approaches toward understanding these novel bacteria. An overview of the Frankia genomes will be presented to stimulate discussion on the potential of these organisms and a greater understanding of their physiology and evolution.


Assuntos
Frankia/genética , Genes Bacterianos , Genoma Bacteriano , Frankia/classificação , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Fixação de Nitrogênio/fisiologia , Plantas/microbiologia , Sequências Reguladoras de Ácido Nucleico , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
14.
PLoS One ; 7(11): e51075, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226466

RESUMO

The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non-sustainable agricultural practices in the Pampa region.


Assuntos
Agricultura/métodos , Bactérias/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química , Argentina , Geografia , Filogenia , Solo/normas
15.
J Microbiol ; 49(6): 902-12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22203552

RESUMO

Many seeds carry endophytes, which ensure good chances of seedling colonization. In this work, we have studied the seed-borne bacterial flora of rice varieties cultivated in the northeast of Argentina. Surface-sterilized husked seeds of the rice cultivars CT6919, El Paso 144, CAMBA, and IRGA 417 contained an average of 5×10(6) CFU/g of mesophilic and copiotrophic bacteria. Microbiological, physiological, and molecular characterization of a set of 39 fast-growing isolates from the CT6919 seeds revealed an important diversity of seed-borne mesophiles and potential plant probiotic activities, including diazotrophy and antagonism of fungal pathogens. In fact, the seed-borne bacterial flora protected the rice seedlings against Curvularia sp. infection. The root colonization pattern of 2 Pantoea isolates from the seeds was studied by fluorescence microscopy of the inoculated axenic rice seedlings. Both isolates strongly colonized the site of emergence of the lateral roots and lenticels, which may represent the entry sites for endophytic spreading. These findings suggest that rice plants allow grain colonization by bacterial species that may act as natural biofertilizers and bioprotectives early from seed germination.


Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Oryza/microbiologia , Desenvolvimento Vegetal , Sementes/microbiologia , Argentina , Ascomicetos/fisiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Endófitos/classificação , Endófitos/genética , Endófitos/fisiologia , Dados de Sequência Molecular , Controle Biológico de Vetores , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas/microbiologia
16.
Genome Res ; 17(1): 7-15, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17151343

RESUMO

Soil bacteria that also form mutualistic symbioses in plants encounter two major levels of selection. One occurs during adaptation to and survival in soil, and the other occurs in concert with host plant speciation and adaptation. Actinobacteria from the genus Frankia are facultative symbionts that form N(2)-fixing root nodules on diverse and globally distributed angiosperms in the "actinorhizal" symbioses. Three closely related clades of Frankia sp. strains are recognized; members of each clade infect a subset of plants from among eight angiosperm families. We sequenced the genomes from three strains; their sizes varied from 5.43 Mbp for a narrow host range strain (Frankia sp. strain HFPCcI3) to 7.50 Mbp for a medium host range strain (Frankia alni strain ACN14a) to 9.04 Mbp for a broad host range strain (Frankia sp. strain EAN1pec.) This size divergence is the largest yet reported for such closely related soil bacteria (97.8%-98.9% identity of 16S rRNA genes). The extent of gene deletion, duplication, and acquisition is in concert with the biogeographic history of the symbioses and host plant speciation. Host plant isolation favored genome contraction, whereas host plant diversification favored genome expansion. The results support the idea that major genome expansions as well as reductions can occur in facultative symbiotic soil bacteria as they respond to new environments in the context of their symbioses.


Assuntos
Frankia/genética , Genoma Bacteriano , Magnoliopsida/microbiologia , Simbiose , Elementos de DNA Transponíveis , DNA Bacteriano , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Geografia , Dados de Sequência Molecular , Fixação de Nitrogênio , Filogenia , Raízes de Plantas/microbiologia , Prófagos , Análise de Sequência de DNA
17.
Curr Microbiol ; 53(6): 523-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17106801

RESUMO

Frankia BCU110601 (Da) and Frankia BCU110345 (Dc) were isolated from root nodules of Discaria articulata and Discaria chacaye, respectively; Frankia BCU110501 (Dt) was previously isolated from Discaria trinervis. The strains were identical at the 16S sequence and after analysis of RFLP of 16S and 23S rDNA intergenic region. Diversity was revealed at the molecular level after fingerprint analysis by BOX-polymerase chain reaction. The strains were infective and effective on the original host plants. A cross-inoculation assay intra Discaria genus, including D. trinervis, D. articulata, and D. chacaye, with each of these isolated Frankia strains caused effective symbioses with a similar dry weight in each plant species regardless of the inoculated strain. Nevertheless, a differential degree of recognition was revealed: Homologous symbiotic pairs in the case of D. chacaye-Frankia BCU110345 (Dc), D. articulata-Frankia BCU110601 (Da), and D. trinervis-Frankia BCU110501 (Dt) had faster nodulation rates than heterologous pairs. The differences in nodulation rate would suggest the existence of a subspecific level of recognition within a certain cross-inoculation group, pointing to subspecific adaptation occurring in this actinorhizal symbiosis.


Assuntos
Frankia/fisiologia , Rhamnaceae/microbiologia , Simbiose , Adaptação Fisiológica , DNA Ribossômico/genética , Frankia/genética , Frankia/isolamento & purificação , Cinética , Fixação de Nitrogênio , Fenótipo , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia
18.
Appl Environ Microbiol ; 72(11): 7083-90, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17088380

RESUMO

In soil ecosystems, bacteria must cope with predation activity, which is attributed mainly to protists. The development of antipredation strategies may help bacteria maintain higher populations and persist longer in the soil. We analyzed the interaction between the root-colonizing and biocontrol strain Pseudomonas fluorescens CHA0 and three different protist isolates (an amoeba, a flagellate, and a ciliate). CHA0 produces a set of antibiotics, HCN, and an exoprotease. We observed that protists cannot grow on CHA0 but can multiply on isogenic regulatory mutants that do not produce the extracellular metabolites. The in vitro responses to CHA0 cells and its exoproducts included growth inhibition, encystation, paralysis, and cell lysis. By analyzing the responses of protists to bacterial supernatants obtained from different isogenic mutants whose production of one or more exometabolites was affected and also to culture extracts with antibiotic enrichment, we observed different contributions of the phenolic antifungal compound 2,4-diacetylphloroglucinol (DAPG) and the extracellular protease AprA to CHA0 toxicity for protists and to the encystation-reactivation cycle. The grazing pressure artificially produced by a mixture of the three protists in a microcosm system resulted in reduced colonization of cucumber roots by a regulatory isogenic CHA0 mutant unable to produce toxins. These results suggest that exometabolite production in biocontrol strain CHA0 may contribute to avoidance of protist grazing and help sustain higher populations in the rhizosphere, which may be a desirable and advantageous trait for competition with other bacteria for available resources.


Assuntos
Antibacterianos/farmacologia , Eucariotos/efeitos dos fármacos , Exopeptidases/farmacologia , Cianeto de Hidrogênio/farmacologia , Comportamento Predatório/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo , Animais , Antibacterianos/metabolismo , Antibiose , Contagem de Colônia Microbiana , Cucumis sativus/microbiologia , Eucariotos/classificação , Eucariotos/microbiologia , Eucariotos/fisiologia , Exopeptidases/metabolismo , Cianeto de Hidrogênio/metabolismo , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Comportamento Predatório/fisiologia , Pseudomonas fluorescens/genética , Solo/parasitologia , Microbiologia do Solo
19.
Ann Bot ; 98(2): 309-15, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16735402

RESUMO

BACKGROUND AND AIMS: The present work aimed to study early stages of nodulation in a chronological sequence and to study phosphorus and nitrogen effects on early stages of nodulation in Alnus incana infected by Frankia. A method was developed to quantify early nodulation stages in intact root systems in the root hair-infected actinorhizal plant A. incana. Plant tissue responses were followed every 2 d until 14 d after inoculation. Cortical cell divisions were already seen 2 d after inoculation with Frankia. Cortical cell division areas, prenodules, nodule primordia and emerging nodules were quantified as host responses to infection. METHODS: Seedlings were grown in pouches and received different levels of phosphorus and nitrogen. Four levels of phosphorus (from 0.03 to 1 mM P) and two levels of nitrogen (0.71 and 6.45 mM N) were used to study P and N effects on these early stages of nodule development. KEY RESULTS: P at a medium concentration (0.1 mM) stimulated cell divisions in the cortex and a number of prenodules, nodule primordia and emerging nodules as compared with higher or lower P levels. A high N level inhibited early cell divisions in the cortex, and this was particularly evident when the length of cell division areas and presence of the nodulation stages were related to root length. CONCLUSIONS: Extended cortical cell division areas were found that have not been previously shown in A. incana. The results show that effects of P and N are already expressed at the stage when the first cortical cell divisions are induced by Frankia.


Assuntos
Alnus/microbiologia , Nitrogênio/farmacologia , Fósforo/farmacologia , Alnus/efeitos dos fármacos , Alnus/crescimento & desenvolvimento , Divisão Celular/efeitos dos fármacos , Frankia/fisiologia , Fixação de Nitrogênio , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
20.
Physiol Plant ; 115(4): 563-570, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12121462

RESUMO

The essentiality of boron (B) for nitrogen fixation in heterocystous cyanobacteria and rhizobial symbioses has been widely established. However, nothing is known about the possible involvement of the micronutrient in actinorhizal symbioses. Therefore, the effect of boron (B) deficiency on the establishment of the Discaria trinervis-Frankia BCU110501 symbiosis was investigated. Nodulation was diminished in B-deficient D. trinervis or in plants inoculated with Frankia grown in the absence of B. These poorly nodulated plants showed a reduction of shoot and root weight and small size. Because depletion of the micronutrient during growth of the actinomycete altered the infection capacity of Frankia, we also studied growth, structure and nitrogen fixation of free-living Frankia BCU110501. Growth was delayed in B-deficient BAP media (+N cultures), and completely inhibited in B-deprived N-free BAP media (-N cultures), suggesting that B is required to enhance growth of Frankia and essential for the development of nitrogen fixing activity. Ultrastructural study of B-deficient cells showed an alteration of filament walls both in +N and especially in -N cultures, indicating a possible role of the microelement in the maintenance of these structures. Moreover, the stability of vesicle envelopes was impaired in the absence of B and, hence, nitrogenase occurrence and nitrogen fixation were totally absent. The results show that B is required for both partners to establish an effective symbiosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...