Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
BJA Open ; 10: 100283, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741692

RESUMO

Background: Hypothermia is neuroprotective after neonatal hypoxic-ischaemic brain injury. However, systemic cooling to hypothermic temperatures is a stressor and may reduce neuroprotection in awake pigs. We compared two experiments of global hypoxic-ischaemic injury in newborn pigs, in which one group received propofol-remifentanil and the other remained awake during post-insult hypothermia treatment. Methods: In both studies, newborn pigs were anaesthetised using halothane during a 45-min global hypoxic-ischaemic insult induced by reducing Fio2 and graded hypotension until a low-voltage <7 µV electroencephalogram was achieved. On reoxygenation, the pigs were randomly allocated to receive 24 h of normothermia or hypothermia. In the first study (n=18) anaesthesia was discontinued and the pigs' tracheas were extubated. In the second study (n=14) anaesthesia was continued using propofol and remifentanil. Brain injury was assessed after 72 h by classical global histopathology, Purkinje cell count, and apoptotic cell counts in the hippocampus and cerebellum. Results: Global injury was nearly 10-fold greater in the awake group compared with the anaesthetised group (P=0.021). Hypothermia was neuroprotective in the anaesthetised pigs but not the awake pigs. In the hippocampus, the density of cleaved caspase-3-positive cells was increased in awake compared with anaesthetised pigs in normothermia. In the cerebellum, Purkinje cell density was reduced in the awake pigs irrespective of treatment, and the number of cleaved caspase-3-positive Purkinje cells was greatly increased in hypothermic awake pigs. We detected no difference in cleaved caspase-3 in the granular cell layer or microglial reactivity across the groups. Conclusions: Our study provides novel insights into the significance of anaesthesia/sedation during hypothermia for achieving optimal neuroprotection.

2.
Physiol Rep ; 11(1): e15562, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636750

RESUMO

Rodent models of neonatal hypoxic-ischemic (HI) injury require a subset of animals to be immobilized for continuous temperature monitoring during the insult and subsequent treatment. Restrained animals are discarded from the analysis due to the effect of restraint on the brain injury as first demonstrated by Thoresen et al 1996. However, the effects of restraint on responses to hypothermic (HT) post-insult therapy are not well described. We examine the effects of restraint associated with different probe placements on HI brain injury. We have conducted a meta-analysis of 23 experiments comparing probe rats (skin n = 42, rectal n = 35) and free-moving matched non-probe controls (n = 80) that underwent HI injury (left common carotid artery ligation and 90 min 8% O2 ) at postnatal day 7 (P7), followed by 5 h of NT (37°C) or HT (32°C). On P14, brain regions were analyzed for injury (by neuropathology and area loss), microglial reactivity and brain-derived neurotrophic factor (BDNF). HI injury was mitigated in NT skin and rectal probe rats, with greater neuroprotection among the rectal probe rats. Following HT, the skin probe rats maintained the restraint-associated neuroprotection, while brain injury was significantly exacerbated among the rectal probe rats. Microglial reactivity strongly correlated with the acquired injury, with no detectable difference between the groups. Likewise, we observed no differences in BDNF signal intensity. Our findings suggest a biphasic neuroprotection from restraint stress, which becomes detrimental in combination with HT and the presumed discomfort from the rectal probe. This finding is useful in highlighting unforeseen effects of common experimental designs or routine clinical management.


Assuntos
Lesões Encefálicas , Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Animais , Ratos , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo , Ratos Wistar , Isquemia/patologia , Hipóxia-Isquemia Encefálica/terapia , Hipóxia/patologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Encéfalo
3.
Dev Neurosci ; 44(4-5): 205-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34915481

RESUMO

We study the effect of hypothermia (HT) following hypoxic-ischaemic (HI) brain injury in postnatal day 7 (P7) rats. In 2015, new European Union animal transport regulations prompted a change in practice at the breeding facility, which henceforth crossfostered P3 litters to P8 older lactating dams prior to transportation. It is generally assumed that crossfostering does not significantly affect the experimental results. The aim of this study was to examine whether crossfostering affects our model consistency by modifying injury susceptibility and hypothermic neuroprotection. We analysed 219 pups from 11 experiments conducted between 2013 and 2015: 73 non-crossfostered and 146 crossfostered pups. At P7, all pups underwent unilateral common carotid artery ligation followed by 50 min of hypoxia (8% O2, 36°C). Immediately after this mild insult, the pups were randomized to post-insult normothermia or HT treatment. Pups were culled at P14. Injury was assessed by area loss of the ipsilateral hemisphere and histopathology scoring of the hippocampus, cortex, thalamus, and basal ganglia. Crossfostered pups had double the injury compared to non-crossfostered pups irrespective of the treatment group. Hypothermic neuroprotection was statistically significant, but with a smaller and less consistent effect in crossfostered pups (relative neuroprotection 16% vs. 31% in non-crossfostered). These results demonstrate hypothermic neuroprotection following a mild HI insult. A representative subset of 41 animals was also assessed for evidence of microglial reactivity; however, no detectable difference in microglial reactivity was observed between any of the groups. In conclusion, crossfostering alters outcomes in our established model through reduced insult tolerance and variable neuroprotection. Crossfostering as a common breeding practice is a largely unexplored variable in animal research that may result in invalid research conclusions if inadequately adjusted for by larger group sizes. As a result, crossfostering is likely to be inconsistent with the principles of replacement, reduction, and refinement.


Assuntos
Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Animais , Animais Recém-Nascidos , Feminino , Hipotermia Induzida/métodos , Hipóxia , Hipóxia-Isquemia Encefálica/patologia , Lactação , Neuroproteção , Ratos , Ratos Wistar
4.
Int Med Case Rep J ; 14: 675-681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602825

RESUMO

BACKGROUND: Successful cardiopulmonary resuscitation after drowning or avalanche is often attributed to hypothermia-induced decrease in metabolism, which adapts the oxygen demand to the amount supplied under cardiac compression. Four decades ago, we speculated if oxygen-sparing mechanisms like those found in marine mammals, may improve cerebral oxygenation during acute airway blockade in humans. We investigated hemodynamic changes during steady state ergometer cycling with intermittent periods of apnea and face immersion (AFI) in ice-cold water. During AFI, heart rate (HR) dropped by 58% whereas average blood velocity (ABV) determined by means of a Doppler ultrasound velocity meter (UNIDOP University of Oslo, Oslo, Norway) fell by 85% in the radial artery and rose by 67% in the vertebral artery. Similar changes occured in radial artery ABV, albeit more slowly, when the test subject only held his breath while cycling. When he breathed via a snorkel during face immersion, HR remained unchanged while radial artery ABV fell transiently and subsequently returned to its pre-immersion level. These findings later were confirmed by other investigators. Moreover, a recent study revealed that the seal even has a system for selective brain cooling during the dive. CONCLUSION: Our research has confirmed prioritized cerebral circulation during AFI in cold water. We hypothesize that these changes may improve brain oxygenation due both to greater blood flow and possibly also to faster brain cooling, as demonstrated in diving seals.

5.
EClinicalMedicine ; 36: 100885, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34308304

RESUMO

BACKGROUND: Binary prediction-models for outcome [death, cognition, presence and severity of cerebral palsy (CP)], using MRI and early clinical data applicable for individual outcome prediction have not been developed. METHODS: From Dec 1st 2006 until Dec 31st 2013, we recruited 178 infants into a population-based cohort with moderate or severe hypoxic-ischaemic encephalopathy (HIE) including postnatal collapse (PNC, n = 12) and additional diagnoses (n = 12) using CoolCap/TOBY-trial entry-criteria including depressed amplitude-integrated EEG (aEEG). Early clinical/biochemical variables and MRI scans (median day 8) were obtained in 168 infants. Injury severity was scored for cortex, basal ganglia/thalami (BGT), white matter (WM) and posterior limb of the internal capsule, summating to a total injury score (TIS, range 0-11). Outcome was categorized as adverse or favourable at 18-24 months from Bayley-III domains (cut-off 85) and neurological examination including CP classification. FINDINGS: HIE and entry-aEEG severity were stable throughout the study. Outcome was favourable in 133/178 infants and adverse in 45/178: 17 died, 28 had low Cognition/Language scores, (including 9 with severe CP and 6 mild); seven had mild CP with favourable cognitive outcome. WMxBGT product scores and TIS were strong outcome predictors, and prediction improved when clinical/biochemical variables were added in binary logistic regression. The Positive Predictive Value for adverse outcome was 88%, increasing to 95% after excluding infants with PNC and additional diagnoses. Using WMxBGT in the regression predicted 8 of the 9 children with severe CP. INTERPRETATION: Binary logistic regression with WMxBGT or TIS and clinical variables gave excellent outcome prediction being 12% better than single variable cross-tabulation. Our MRI scoring and regression models are readily accessible and deserve investigation in other cohorts for group and individual prediction. FUNDING: We thank the National Health Service (NHS) and our Universities and funders in UK and Norway: SPARKS, The Moulton Foundation, The Norwegian Research Council, The Lærdal Foundation for Acute Medicine and charitable donations for their support for cooling therapy.

6.
EClinicalMedicine ; 36: 100892, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34308308

RESUMO

BACKGROUND: Hypothermia-treated and intubated infants with moderate or severe hypoxic-ischemic encephalopathy (HIE) usually receive morphine for sedation and analgesia (SA) during therapeutic hypothermia (TH) and endotracheal ventilation. Altered drug pharmacokinetics in this population increases the risk of drug accumulation. Opioids are neurotoxic in preterm infants. In term infants undergoing TH, the long-term effects of morphine exposure are unknown. We examined the effect of opioid administration during TH on neurodevelopmental outcome and time to extubation after sedation ended. METHODS: In this prospectively collected population-based cohort of 282 infants with HIE treated with TH (2007-2017), the cumulative opioid dose of morphine and equipotent fentanyl (10-60 µg/kg/h) administered during the first week of life was calculated. Clinical outcomes and concomitant medications were also collected. Of 258 survivors, 229 underwent Bayley-3 neurodevelopmental assessments of cognition, language and motor function at 18-24 months. Multivariate stepwise linear regression analysis was used to examine the relation between cumulative opioid dose and Bayley-3 scores. Three severity-groups (mild-moderate-severe) were stratified by early (<6 h) amplitude-integrated electroencephalography (aEEG) patterns. FINDINGS: The cumulative dose of opioid administered as SA during TH was median (IQR) 2121 µg/kg (1343, 2741). Time to extubation was independent of SA dose (p > 0.2). There was no significant association between cumulative SA dose and any of the Bayley-3 domains when analysing the entire cohort or any of the aEEG severity groups. INTERPRETATION: Higher cumulative opioid doses in TH-treated infants with HIE was not associated with worse Bayley-3 scores at 18-24 months of age. FUNDING: The Bristol cooling program was funded by the Children's Medical Research Charity SPARKS managing donations for our research from the UK and US, the UK Moulton Foundation, the Lærdal Foundation for Acute Medicine in Norway and the Norwegian Research Council (JKG).

7.
Sci Rep ; 10(1): 10833, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616806

RESUMO

Therapeutic hypothermia (HT) is standard care for term infants with hypoxic-ischaemic (HI) encephalopathy. However, the efficacy of HT in preclinical models, such as the Vannucci model of unilateral HI in the newborn rat, is often greater than that reported from clinical trials. Here, we report a meta-analysis of data from every experiment in a single laboratory, including pilot data, examining the effect of HT in the Vannucci model. Across 21 experiments using 106 litters, median (95% CI) hemispheric area loss was 50.1% (46.0-51.9%; n = 305) in the normothermia group, and 41.3% (35.1-44.9%; n = 317) in the HT group, with a bimodal injury distribution. Median neuroprotection by HT was 17.6% (6.8-28.3%), including in severe injury, but was highly-variable across experiments. Neuroprotection was significant in females (p < 0.001), with a non-significant benefit in males (p = 0.07). Animals representing the median injury in each group within each litter (n = 277, 44.5%) were also analysed using formal neuropathology, which showed neuroprotection by HT throughout the brain, particularly in females. Our results suggest an inherent variability and sex-dependence of the neuroprotective response to HT, with the majority of studies in the Vannucci model vastly underpowered to detect true treatment effects due to the distribution of injury.


Assuntos
Lesões Encefálicas/terapia , Modelos Animais de Doenças , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/terapia , Laboratórios/estatística & dados numéricos , Fármacos Neuroprotetores/uso terapêutico , Animais , Animais Recém-Nascidos , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Feminino , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/patologia , Masculino , Metanálise como Assunto , Ratos , Ratos Wistar , Fatores Sexuais
8.
Proc Biol Sci ; 286(1901): 20182429, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30991930

RESUMO

Plague has a long history on the European continent, with evidence of the disease dating back to the Stone Age. Plague epidemics in Europe during the First and Second Pandemics, including the Black Death, are infamous for their widespread mortality and lasting social and economic impact. Yet, Europe still experienced plague outbreaks during the Third Pandemic, which began in China and spread globally at the end of the nineteenth century. The digitization of international records of notifiable diseases, including plague, has enabled us to retrace the introductions of the disease to Europe from the earliest reported cases in 1899, to its disappearance in the 1940s. Using supplemental literature, we summarize the potential sources of plague in Europe and the transmission of the disease, including the role of rats. Finally, we discuss the international efforts aimed at prevention and intervention measures, namely improved hygiene and sanitation, that ultimately led to the disappearance of plague in Europe.


Assuntos
Pandemias/história , Peste/história , Animais , Vetores de Doenças , Europa (Continente)/epidemiologia , História do Século XX , História do Século XXI , Humanos , Peste/epidemiologia , Peste/transmissão , Ratos , Yersinia pestis/fisiologia
13.
Handb Clin Neurol ; 157: 677-685, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459032

RESUMO

The term acral coldness is used to describe physiologic or pathologic situations in humans where the fingers and toes are exceptionally cold in spite of normal central body temperature. In the thermoneutral zone, the blood flow to acral skin normally shows large fluctuations between high and low values, with a frequency of about 3 cycles per minute. At an acral skin temperature of about 21°C, finger blood flow is constantly low. At lower temperatures the fingers and toes become painful. This is a normal physiologic reaction, probably because of ischemia. The characteristics of the most frequent acral vascular syndromes, Raynaud phenomenon, acrocyanosis, and chilblains, are discussed. Common to all three is pathologically low blood flow and disappearance of physiologic fluctuations even in the thermoneutral zone. Ischemic vascular diseases in acral skin are usually diagnosed from clinical observations. Measurements of fluctuating blood flow by laser or ultrasound Doppler could be useful, but should be carried out at a room temperature of 24-25°C.


Assuntos
Temperatura Baixa , Dedos/irrigação sanguínea , Fluxo Sanguíneo Regional , Temperatura Cutânea/fisiologia , Dedos do Pé/irrigação sanguínea , Humanos , Vasoconstrição
14.
Med Hypotheses ; 119: 98-101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30122500

RESUMO

Knowledge about how information is stored in neurons of animals and in the human brain is still incomplete. A hypothesis related to long-term changes in synaptic efficiency has strong experimental support, but does not seem to be able to explain all observations. It has recently been proposed that magnetite together with a prion-like protein could be involved in a tandem mechanism for storage of memory in neurons in which electric impulses are received and reshaped by the magnetite to a form which can be accepted by the protein. The magnetite crystals can be magnetized by an electrical impulse, but they cannot hold the magnetism, which drops to zero after each impulse. Therefore, magnetite cannot be the substance in which information is stored. In the present paper we explain how a tandem mechanism could function in a neuron in which magnetite is situated together with a prion-like protein close to the cell surface membrane of the axon. We assume in addition that the information is stored in special storage neurons. With this, we propose a new hypothesis for information storage in neurons which could operate in addition to synaptic plasticity, but perhaps in different neurons.


Assuntos
Axônios/metabolismo , Óxido Ferroso-Férrico/química , Memória , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Príons/fisiologia , Animais , Encéfalo/fisiologia , Cristalização , Eletricidade , Humanos , Magnetismo , Potenciais da Membrana , Modelos Teóricos , Sinapses/fisiologia
16.
Dev Neurosci ; 40(3): 189-197, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29860252

RESUMO

BACKGROUND: Preclinical research on the neuroprotective effect of hypothermia (HT) after perinatal asphyxia has shown variable results, depending on comorbidities and insult severity. Exposure to inflammation increases vulnerability of the neonatal brain to hypoxic-ischaemic (HI) injury, and could be one explanation for those neonates whose injury is unexpectedly severe. Gram-negative type inflammatory exposure by lipopolysaccharide administration prior to a mild HI insult results in moderate brain injury, and hypothermic neuroprotection is negated. However, the neuroprotective effect of HT is fully maintained after gram-positive type inflammatory exposure by PAM3CSK4 (PAM) pre-administration in the same HI model. Whether HT is neuroprotective in severe brain injury with gram-positive inflammatory pre-exposure has not been investigated. METHODS: 59 seven-day-old rat pups were subjected to a unilateral HI insult, with left carotid artery ligation followed by 90-min hypoxia (8% O2 at Trectal 36°C). An additional 196 pups received intraperitoneal 0.9% saline (control) or PAM1 mg/kg, 8 h before undergoing the same HI insult. After randomisation to 5 h normothermia (NT37°C) or HT32°C, pups survived 1 week before they were sacrificed by perfusion fixation. Brains were harvested for hemispheric and hippocampal area loss analyses at postnatal day 14, as well as immunostaining for neuron count in the HIP CA1 region. RESULTS: Normothermic PAM animals (PAM-NT) had a comparable median area loss (hemispheric: 60% [95% CI 33-66]; hippocampal: 61% [95% CI 29-67]) to vehicle animals (Veh-NT) (hemispheric: 58% [95% CI 11-64]; hippocampal: 60% [95% CI 19-68]), which is defined as severe brain injury. Furthermore, mortality was low and similar in the two groups (Veh-NT 4.5% vs. PAM-NT 6.6%). HT reduced hemispheric and hippocampal injury in the Veh group by 13 and 28%, respectively (hemispheric: p = 0.048; hippocampal: p = 0.042). HT also provided neuroprotection in the PAM group, reducing hemispheric injury by 22% (p = 0.03) and hippocampal injury by 37% (p = 0.027). CONCLUSION: In these experiments with severe brain injury, Toll-like receptor-2 triggering prior to HI injury does not have an additive injurious effect, and there is a small but significant neuroprotective effect of HT. HT appears to be neuroprotective over a continuum of injury severity in this model, and the effect size tapers off with increasing area loss. Our results indicate that gram-positive inflammatory exposure prior to HI injury does not negate the neuroprotective effect of HT in severe brain injury.


Assuntos
Encéfalo/patologia , Hipóxia-Isquemia Encefálica/patologia , Lipopeptídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Hipotermia Induzida/métodos , Hipóxia/metabolismo , Neurônios/efeitos dos fármacos , Neuroproteção , Ratos Wistar
17.
Proc Natl Acad Sci U S A ; 115(6): 1304-1309, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29339508

RESUMO

Plague, caused by the bacterium Yersinia pestis, can spread through human populations by multiple transmission pathways. Today, most human plague cases are bubonic, caused by spillover of infected fleas from rodent epizootics, or pneumonic, caused by inhalation of infectious droplets. However, little is known about the historical spread of plague in Europe during the Second Pandemic (14-19th centuries), including the Black Death, which led to high mortality and recurrent epidemics for hundreds of years. Several studies have suggested that human ectoparasite vectors, such as human fleas (Pulex irritans) or body lice (Pediculus humanus humanus), caused the rapidly spreading epidemics. Here, we describe a compartmental model for plague transmission by a human ectoparasite vector. Using Bayesian inference, we found that this model fits mortality curves from nine outbreaks in Europe better than models for pneumonic or rodent transmission. Our results support that human ectoparasites were primary vectors for plague during the Second Pandemic, including the Black Death (1346-1353), ultimately challenging the assumption that plague in Europe was predominantly spread by rats.


Assuntos
Modelos Estatísticos , Pediculus , Peste/epidemiologia , Peste/transmissão , Sifonápteros , Animais , Teorema de Bayes , Vetores de Doenças , Ectoparasitoses , Métodos Epidemiológicos , Europa (Continente)/epidemiologia , Humanos , Cadeias de Markov , Pandemias , Pediculus/microbiologia , Peste/mortalidade , Peste/parasitologia , Roedores , Sifonápteros/microbiologia , Yersinia pestis/patogenicidade
18.
Adv Exp Med Biol ; 918: 1-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27722858

RESUMO

Plague caused by Yersinia pestis is a zoonotic infection, i.e., it is maintained in wildlife by animal reservoirs and on occasion spills over into human populations, causing outbreaks of different entities. Large epidemics of plague, which have had significant demographic, social, and economic consequences, have been recorded in Western European historical documents since the sixth century. Plague has remained in Europe for over 1400 years, intermittently disappearing, yet it is not clear if there were reservoirs for Y. pestis in Western Europe or if the pathogen was rather reimported on different occasions from Asian reservoirs by human agency. The latter hypothesis thus far seems to be the most plausible one, as it is sustained by both ecological and climatological evidence, helping to interpret the phylogeny of this bacterium.


Assuntos
Pandemias/história , Peste/história , Yersinia pestis/patogenicidade , Animais , Clima , Reservatórios de Doenças/classificação , Vetores de Doenças/classificação , Europa (Continente) , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Medieval , Humanos , Peste/microbiologia , Peste/transmissão , Zoonoses/história
19.
Temperature (Austin) ; 3(1): 92-103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227081

RESUMO

Arterio-venous anastomoses (AVAs) are direct connections between small arteries and small veins. In humans they are numerous in the glabrous skin of the hands and feet. The AVAs are short vessel segments with a large inner diameter and a very thick muscular wall. They are densely innervated by adrenergic axons. When they are open, they provide a low-resistance connection between arteries and veins, shunting blood directly into the venous plexuses of the limbs. The AVAs play an important role in temperature regulation in humans in their thermoneutral zone, which for a naked resting human is about 26°C to 36°C, but lower when active and clothed. From the temperature control center in the hypothalamus, bursts of nerve impulses are sent simultaneously to all AVAs. The AVAs are all closed near the lower end and all open near the upper end of the thermoneutral zone. The small veins in the skin of the arms and legs are also contracted near the lower end of the thermoneutral zone and relax to a wider cross section as the ambient temperature rises. At the cold end of the thermoneutral range, the blood returns to the heart through the deep veins and cools the arterial blood through a countercurrent mechanism. As the ambient temperature rises, more blood is returned through the superficial venous plexuses and veins and heats the skin surface of the full length of the 4 limbs. This skin surface is responsible for a large part of the loss of heat from the body toward the upper end of the thermoneutral zone.

20.
Sci Rep ; 6: 23430, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26997257

RESUMO

Therapeutic hypothermia (HT) is standard care for moderate and severe neonatal hypoxic-ischaemic encephalopathy (HIE), the leading cause of permanent brain injury in term newborns. However, the optimal temperature for HT is still unknown, and few preclinical studies have compared multiple HT treatment temperatures. Additionally, HT may not benefit infants with severe encephalopathy. In a neonatal rat model of unilateral hypoxia-ischaemia (HI), the effect of five different HT temperatures was investigated after either moderate or severe injury. At postnatal-day seven, rat pups underwent moderate or severe HI followed by 5 h at normothermia (37 °C), or one of five HT temperatures: 33.5 °C, 32 °C, 30 °C, 26 °C, and 18 °C. One week after treatment, neuropathological analysis of hemispheric and hippocampal area loss, and CA1 hippocampal pyramidal neuron count, was performed. After moderate injury, a significant reduction in hemispheric and hippocampal loss on the injured side, and preservation of CA1 pyramidal neurons, was seen in the 33.5 °C, 32 °C, and 30 °C groups. Cooling below 33.5 °C did not provide additional neuroprotection. Regardless of treatment temperature, HT was not neuroprotective in the severe HI model. Based on these findings, and previous experience translating preclinical studies into clinical application, we propose that milder cooling should be considered for future clinical trials.


Assuntos
Encéfalo/patologia , Hipertermia Induzida/métodos , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Células Piramidais/patologia , Animais , Animais Recém-Nascidos , Contagem de Células , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Masculino , Ratos , Ratos Wistar , Temperatura , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...