Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Am Chem Soc ; 145(29): 15809-15815, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37458572

RESUMO

Methods capable of controlling synthesis at the level of an individual nanoparticle are a key step toward improved reproducibility and scalability in engineering complex nanomaterials. To address this, we combine the spatially patterned activation of the photoreductant sodium pyruvate with interferometric scattering microscopy to achieve fast, label-free monitoring and control of hundreds of gold nanoparticles in real time. Individual particle growth kinetics are well-described by a two-step nucleation-autocatalysis model but with a distribution of individual rate constants that change with reaction conditions.

2.
FEBS J ; 290(2): 428-441, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989549

RESUMO

We exploit single-molecule tracking and optical single channel recording in droplet interface bilayers to resolve the assembly pathway and pore formation of the archetypical cholesterol-dependent cytolysin nanopore, Perfringolysin O. We follow the stoichiometry and diffusion of Perfringolysin O complexes during assembly with 60 ms temporal resolution and 20 nm spatial precision. Our results suggest individual nascent complexes can insert into the lipid membrane where they continue active assembly. Overall, these data support a model of stepwise irreversible assembly dominated by monomer addition, but with infrequent assembly from larger partial complexes.


Assuntos
Toxinas Bacterianas , Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Colesterol/metabolismo , Membrana Celular/metabolismo
3.
Commun Biol ; 5(1): 471, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581327

RESUMO

Single-molecule studies can reveal phenomena that remain hidden in ensemble measurements. Here we show the correlation between lateral protein diffusion and channel activity of the general protein import pore of mitochondria (TOM-CC) in membranes resting on ultrathin hydrogel films. Using electrode-free optical recordings of ion flux, we find that TOM-CC switches reversibly between three states of ion permeability associated with protein diffusion. While freely diffusing TOM-CC molecules are predominantly in a high permeability state, non-mobile molecules are mostly in an intermediate or low permeability state. We explain this behavior by the mechanical binding of the two protruding Tom22 subunits to the hydrogel and a concomitant combinatorial opening and closing of the two ß-barrel pores of TOM-CC. TOM-CC could thus represent a ß-barrel membrane protein complex to exhibit membrane state-dependent mechanosensitive properties, mediated by its two Tom22 subunits.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Hidrogéis , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(20): e2121487119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549548

RESUMO

In comparison to globular proteins, the spontaneous folding and insertion of ß-barrel membrane proteins are surprisingly slow, typically occurring on the order of minutes. Using single-molecule Förster resonance energy transfer to report on the folding of fluorescently labeled outer membrane protein G we measured the real-time insertion of a ß-barrel membrane protein from an unfolded state. Folding events were rare and fast (<20 ms), occurring immediately upon arrival at the membrane. This combination of infrequent, but rapid, folding resolves this apparent dichotomy between slow ensemble kinetics and the typical timescales of biomolecular folding.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Porinas , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Porinas/química , Conformação Proteica em Folha beta , Dobramento de Proteína , Imagem Individual de Molécula
5.
Nat Chem ; 13(7): 643-650, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33972753

RESUMO

The design of peptides that assemble in membranes to form functional ion channels is challenging. Specifically, hydrophobic interactions must be designed between the peptides and at the peptide-lipid interfaces simultaneously. Here, we take a multi-step approach towards this problem. First, we use rational de novo design to generate water-soluble α-helical barrels with polar interiors, and confirm their structures using high-resolution X-ray crystallography. These α-helical barrels have water-filled lumens like those of transmembrane channels. Next, we modify the sequences to facilitate their insertion into lipid bilayers. Single-channel electrical recordings and fluorescent imaging of the peptides in membranes show monodisperse, cation-selective channels of unitary conductance. Surprisingly, however, an X-ray structure solved from the lipidic cubic phase for one peptide reveals an alternative state with tightly packed helices and a constricted channel. To reconcile these observations, we perform computational analyses to compare the properties of possible different states of the peptide.


Assuntos
Canais Iônicos/química , Bicamadas Lipídicas/química , Peptídeos/química , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas , Solubilidade , Água/química
6.
Methods Enzymol ; 649: 431-459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33712195

RESUMO

Single-channel recording from pore-forming toxins (PFTs) provides a clear and direct molecular readout of toxin action. However to complete any mechanistic understanding of PFT behavior, this functional kinetic readout must be linked to the underlying changes in toxin structure, binding, conformation, or stoichiometry. Here we review how single-molecule imaging methods might be used to further our understanding of PFTs, and provide detailed practical guidance on the use of droplet interface bilayers as a method capable of examining both single-molecule fluorescence and single-channel electrical signals from PFTs.


Assuntos
Bicamadas Lipídicas , Imagem Individual de Molécula , Membrana Celular
7.
ACS Nano ; 13(9): 9973-9979, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31418553

RESUMO

We describe the triggered assembly of a bioinspired DNA origami meshwork on a lipid membrane. DNA triskelia, three-armed DNA origami nanostructures inspired by the membrane-modifying protein clathrin, are bound to lipid mono- and bilayers using cholesterol anchors. Polymerization of triskelia, triggered by the addition of DNA staples, links triskelion arms to form a mesh. Using transmission electron microscopy, we observe nanoscale local deformation of a lipid monolayer induced by triskelion polymerization that is reminiscent of the formation of clathrin-coated pits. We also show that the polymerization of triskelia bound to lipid bilayers modifies interactions between them, inhibiting the formation of a synapse between giant unilamellar vesicles and a supported lipid bilayer.


Assuntos
Clatrina/química , DNA/química , Membranas Artificiais , Conformação de Ácido Nucleico , DNA/ultraestrutura , Bicamadas Lipídicas/química , Lipossomas Unilamelares
8.
Biophys J ; 116(6): 1085-1094, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30846364

RESUMO

Diffusion in cell membranes is not just simple two-dimensional Brownian motion but typically depends on the timescale of the observation. The physical origins of this anomalous subdiffusion are unresolved, and model systems capable of quantitative and reproducible control of membrane diffusion have been recognized as a key experimental bottleneck. Here, we control anomalous diffusion using supported lipid bilayers containing lipids derivatized with polyethylene glycol (PEG) headgroups. Bilayers with specific excluded area fractions are formed by control of PEG lipid mole fraction. These bilayers exhibit a switch in diffusive behavior, becoming anomalous as bilayer continuity is disrupted. Using a combination of single-molecule fluorescence and interferometric imaging, we measure the anomalous behavior in this model over four orders of magnitude in time. Diffusion in these bilayers is well described by a power-law dependence of the mean-square displacement with observation time. Anomaleity in this system can be tailored by simply controlling the mole fraction of PEG lipid, producing bilayers with diffusion parameters similar to those observed for anomalous diffusion in biological membranes.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Difusão , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Método de Monte Carlo , Polietilenoglicóis/química
9.
Nat Commun ; 9(1): 1710, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703992

RESUMO

G protein-coupled receptors (GPCRs) are the largest class of membrane receptors, playing a key role in the regulation of processes as varied as neurotransmission and immune response. Evidence for GPCR oligomerisation has been accumulating that challenges the idea that GPCRs function solely as monomeric receptors; however, GPCR oligomerisation remains controversial primarily due to the difficulties in comparing evidence from very different types of structural and dynamic data. Using a combination of single-molecule and ensemble FRET, double electron-electron resonance spectroscopy, and simulations, we show that dimerisation of the GPCR neurotensin receptor 1 is regulated by receptor density and is dynamically tuneable over the physiological range. We propose a "rolling dimer" interface model in which multiple dimer conformations co-exist and interconvert. These findings unite previous seemingly conflicting observations, provide a compelling mechanism for regulating receptor signalling, and act as a guide for future physiological studies.


Assuntos
Simulação de Dinâmica Molecular , Multimerização Proteica/fisiologia , Receptores de Neurotensina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Bicamadas Lipídicas/metabolismo , Método de Monte Carlo , Neurotensina/metabolismo , Receptores de Neurotensina/agonistas , Receptores de Neurotensina/genética , Imagem Individual de Molécula/métodos
10.
Philos Trans R Soc Lond B Biol Sci ; 372(1726)2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28630163

RESUMO

Electroporation is a common tool for gene transfection, tumour ablation, sterilization and drug delivery. Using experimental methods, we explore the temperature dependence of electropore formation in a model membrane system (droplet-interface bilayers), using optical single-channel recording to image the real-time gating of individual electropores. We investigate the influence of the agarose substrate on electropores formed in this system. Furthermore, by examining the temperature-dependent kinetics of pore opening and closure we are able to estimate a barrier to pore opening in 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) membranes to be 25.0 ± 8.3 kBT, in agreement with previous predictions. Overall these measurements help support the toroidal model of membrane electroporation.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.


Assuntos
Eletroporação , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Cinética
11.
Soft Matter ; 13(13): 2550, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28317973

RESUMO

Correction for 'On demand modulation of lipid composition in an individual bilayer' by John S. H. Danial et al., Soft Matter, 2017, 13, 1788-1793.

12.
Soft Matter ; 13(9): 1788-1793, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28165095

RESUMO

Changes in local lipid composition are thought to play a key role in regulating many complex cellular processes. By studying lipid organization in artificial lipid bilayers the physical principles underlying these process can be studied in detail. However, such in vitro measurements are often hindered by heterogeneities in the lipid composition of individual bilayers prepared by current bulk methods. Here, the lipid composition of an individual droplet interface bilayer is varied by lipid titration into the bilayer from the oil phase in a microfluidic device. Control of lipid composition allows the reversible switching between single- and two-phase regions and sampling of specific lipid compositions in an individual bilayer. This method enables controlled modulation of composition-sensitive processes in a single lipid membrane.

13.
Elife ; 52016 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-27914200

RESUMO

The twin-arginine protein translocation system (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membranes of plant chloroplasts. The Tat transporter is assembled from multiple copies of the membrane proteins TatA, TatB, and TatC. We combine sequence co-evolution analysis, molecular simulations, and experimentation to define the interactions between the Tat proteins of Escherichia coli at molecular-level resolution. In the TatBC receptor complex the transmembrane helix of each TatB molecule is sandwiched between two TatC molecules, with one of the inter-subunit interfaces incorporating a functionally important cluster of interacting polar residues. Unexpectedly, we find that TatA also associates with TatC at the polar cluster site. Our data provide a structural model for assembly of the active Tat translocase in which substrate binding triggers replacement of TatB by TatA at the polar cluster site. Our work demonstrates the power of co-evolution analysis to predict protein interfaces in multi-subunit complexes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Multimerização Proteica , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica
14.
Proc Natl Acad Sci U S A ; 113(19): 5281-6, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114528

RESUMO

Electroporation is a widely used technique to permeabilize cell membranes. Despite its prevalence, our understanding of the mechanism of voltage-mediated pore formation is incomplete; methods capable of visualizing the time-dependent behavior of individual electropores would help improve our understanding of this process. Here, using optical single-channel recording, we track multiple isolated electropores in real time in planar droplet interface bilayers. We observe individual, mobile defects that fluctuate in size, exhibiting a range of dynamic behaviors. We observe fast (25 s(-1)) and slow (2 s(-1)) components in the gating of small electropores, with no apparent dependence on the applied potential. Furthermore, we find that electropores form preferentially in the liquid disordered phase. Our observations are in general supportive of the hydrophilic toroidal pore model of electroporation, but also reveal additional complexity in the interactions, dynamics, and energetics of electropores.


Assuntos
Eletroporação/métodos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/efeitos da radiação , Potenciais da Membrana/efeitos da radiação , Microscopia de Fluorescência/métodos , Porosidade/efeitos da radiação , Campos Eletromagnéticos , Cinética , Teste de Materiais , Permeabilidade/efeitos da radiação
15.
Nat Chem ; 8(4): 384-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27001735

RESUMO

Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, kBT, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin-tryptophan and flavin-ascorbic acid photocycles and the closely related intramolecular flavin-tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.


Assuntos
Criptocromos/química , Campos Magnéticos , Células Receptoras Sensoriais/fisiologia , Animais , Ácido Ascórbico/química , Flavinas/química , Luz , Muramidase/química , Triptofano/química
16.
J Am Chem Soc ; 138(2): 688-95, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26699898

RESUMO

The synthetic biology toolbox lacks extendable and conformationally controllable yet easy-to-synthesize building blocks that are long enough to span membranes. To meet this need, an iterative synthesis of α-aminoisobutyric acid (Aib) oligomers was used to create a library of homologous rigid-rod 310-helical foldamers, which have incrementally increasing lengths and functionalizable N- and C-termini. This library was used to probe the inter-relationship of foldamer length, self-association strength, and ionophoric ability, which is poorly understood. Although foldamer self-association in nonpolar chloroform increased with length, with a ∼ 14-fold increase in dimerization constant from Aib6 to Aib11, ionophoric activity in bilayers showed a stronger length dependence, with the observed rate constant for Aib11 ∼ 70-fold greater than that of Aib6. The strongest ionophoric activity was observed for foldamers with >10 Aib residues, which have end-to-end distances greater than the hydrophobic width of the bilayers used (∼ 2.8 nm); X-ray crystallography showed that Aib11 is 2.93 nm long. These studies suggest that being long enough to span the membrane is more important for good ionophoric activity than strong self-association in the bilayer. Planar bilayer conductance measurements showed that Aib11 and Aib13, but not Aib7, could form pores. This pore-forming behavior is strong evidence that Aibm (m ≥ 10) building blocks can span bilayers.


Assuntos
Ácidos Aminoisobutíricos/química , Membrana Celular , Cristalografia por Raios X , Fluorescência , Estrutura Molecular
17.
Biochim Biophys Acta ; 1858(3): 613-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26210300

RESUMO

Using total internal reflection fluorescence microscopy of droplet interface bilayers containing the potassium-sensitive fluorophore APG-4, we imaged the ionic flux through individual electropores. We are able to monitor up to 30 individual pores in parallel and show voltage dependent responses in fluorescence that corresponds to the measured ionic current. These experiments help quantify the scope and current limitations of optical single channel recordings of potassium flux. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.


Assuntos
Bicamadas Lipídicas/química , Canais de Potássio/química , Potássio/química , Transporte de Íons , Microscopia de Fluorescência
18.
Nat Nanotechnol ; 10(11): 986-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26322943

RESUMO

Protein nanopores such as α-haemolysin and Mycobacterium smegmatis porin A (MspA) can be used to sequence long strands of DNA at low cost. To provide high-speed sequencing, large arrays of nanopores are required, but current nanopore sequencing methods rely on ionic current measurements from individually addressed pores and such methods are likely to prove difficult to scale up. Here we show that, by optically encoding the ionic flux through protein nanopores, the discrimination of nucleic acid sequences and the detection of sequence-specific nucleic acid hybridization events can be parallelized. We make optical recordings at a density of ∼10(4) nanopores per mm(2) in a single droplet interface bilayer. Nanopore blockades can discriminate between DNAs with sub-picoampere equivalent resolution, and specific miRNA sequences can be identified by differences in unzipping kinetics. By creating an array of 2,500 bilayers with a micropatterned hydrogel chip, we are also able to load different samples into specific bilayers suitable for high-throughput nanopore recording.


Assuntos
DNA/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/análise , Nanoporos , Proteínas de Bactérias/química , Sequência de Bases , Fluorescência , Proteínas Hemolisinas/química , Humanos , Mycobacterium smegmatis/química , Nanoporos/ultraestrutura , Ácidos Nucleicos/análise , Porinas/química , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos
19.
Proc Natl Acad Sci U S A ; 112(40): 12299-303, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26401022

RESUMO

Lipid rafts are submicron proteolipid domains thought to be responsible for membrane trafficking and signaling. Their small size and transient nature put an understanding of their dynamics beyond the reach of existing techniques, leading to much contention as to their exact role. Here, we exploit the differences in light scattering from lipid bilayer phases to achieve dynamic imaging of nanoscopic lipid domains without any labels. Using phase-separated droplet interface bilayers we resolve the diffusion of domains as small as 50 nm in radius and observe nanodomain formation, destruction, and dynamic coalescence with a domain lifetime of 220±60 ms. Domain dynamics on this timescale suggests an important role in modulating membrane protein function.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Microdomínios da Membrana/química , Nanoestruturas/química , Difusão , Cinética , Luz , Microscopia de Interferência/métodos , Nanotecnologia/métodos , Espalhamento de Radiação , Solubilidade , Propriedades de Superfície , Temperatura
20.
Mol Microbiol ; 98(1): 111-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26112072

RESUMO

The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in Escherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substrates, while multiple protomers of TatA assemble at substrate-bound TatBC receptors to facilitate substrate transport. We have addressed whether oligomerisation of TatC is an absolute requirement for operation of the Tat pathway by screening for dominant negative alleles of tatC that inactivate Tat function in the presence of wild-type tatC. Single substitutions that confer dominant negative TatC activity were localised to the periplasmic cap region. The variant TatC proteins retained the ability to interact with TatB and with a Tat substrate but were unable to support the in vivo assembly of TatA complexes. Blue-native PAGE analysis showed that the variant TatC proteins produced smaller TatBC complexes than the wild-type TatC protein. The substitutions did not alter disulphide crosslinking to neighbouring TatC molecules from positions in the periplasmic cap but abolished a substrate-induced disulphide crosslink in transmembrane helix 5 of TatC. Our findings show that TatC functions as an obligate oligomer.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Arginina , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Periplasma/metabolismo , Fenótipo , Ligação Proteica , Subunidades Proteicas , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...