Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Glob Chang Biol ; 30(1): e17086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273496

RESUMO

Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.


Assuntos
Ecossistema , Florestas , Árvores , Plantas , Nitrogênio
2.
New Phytol ; 241(5): 2287-2299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126264

RESUMO

Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.


Les changements globaux accélèrent les processus de colonisation et d'extinction locales d'espèces, aboutissant à des gains ou à des pertes de lignées évolutives uniques. Ces gains et pertes se produisent-ils de manière aléatoire dans l'arbre phylogénétique ? Nous avons mesuré: les changements de diversité phylogénétique; et la parenté phylogénétique des espèces végétales gagnées ou perdues dans 2672 placettes semi-permanentes disposées dans le sous-bois de forêts tempérées d'Europe sur une période moyenne de 40 ans. Une fois corrigée par la richesse spécifique, la diversité phylogénétique a légèrement augmenté au cours du temps dans les différentes placettes. Les espèces perdues ont une plus grande parenté phylogénétique que les espèces gagnées. Les espèces gagnées sont donc issues d'un plus grand nombre de lignées évolutives que les espèces perdues. Certaines lignées ont gagné ou perdu davantage d'espèces que ce qui est prédit par le hasard : les Ericaceae, les Fabaceae et les Orchidaceae ayant davantage perdu, tandis que les Amaranthaceae, les Cyperaceae, et les Rosaceae ont plus gagné. Il n'y a pas de signal phylogénétique des gains ou pertes d'espèces en réponse aux changements de conditions macroclimatiques ou des dépôts atmosphériques d'azote. Alors que les changements globaux d'origine anthropique s'intensifient, les sous-bois des forêts tempérées connaissent des gains et des pertes de certaines lignées évolutives et de certaines stratégies écologiques, sans que la diversité phylogénétique moyenne ne s'en trouve véritablement affectée.


El cambio global ha acelerado las extinciones y colonizaciones a escala local, lo que a menudo ha supuesto pérdidas y ganancias de linajes evolutivos con características únicas. Ahora bien, ¿estas pérdidas y ganancias ocurren aleatoriamente a lo largo de la filogenia? Cuantificamos: los cambios temporales en la diversidad filogenética de las plantas; y la relación filogenética de las especies perdidas y ganadas en 2.672 parcelas de vegetación semipermanente en sotobosques templados europeos y re-muestreadas durante un período promedio de 40 años. Al controlar por las diferencias en la riqueza de especies, la diversidad filogenética aumentó ligeramente con el tiempo y entre parcelas. Además, las especies perdidas dentro de las parcelas exhibieron un mayor grado de relación filogenética que las especies ganadas. Esto implica que las especies ganadas se originaron en un conjunto de linajes evolutivos más diversos que las especies perdidas. Ciertos linajes también perdieron y ganaron más especies de las esperadas aleatoriamente: Ericaceae, Fabaceae y Orchidaceae experimentaron pérdidas y Amaranthaceae, Cyperaceae y Rosaceae mostraron ganancias. Las pérdidas y ganancias de especies no mostraron ninguna señal filogenética significativa en respuesta a los cambios en las condiciones macro-climáticas y la deposición de nitrógeno. A medida que se intensifica el cambio global antropogénico, los sotobosques temperados experimentan pérdidas y ganancias en ramas filogenéticas y estrategias ecológicas específicas, mientras que la diversidad filogenética media general permanece relativamente estable.


Assuntos
Biodiversidade , Nitrogênio , Filogenia , Mudança Climática , Florestas , Plantas
3.
Evolution ; 77(6): 1315-1329, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36932967

RESUMO

Inbreeding exposes deleterious recessive alleles in homozygotes, lowering fitness and generating inbreeding depression (ID). Both purging (via selection) and fixation (via drift) should reduce segregating deleterious mutations and ID in more inbred populations. These theoretical predictions are not well-tested in wild populations, which is concerning given purging/fixation have opposite fitness outcomes. We examined how individual- and population-level inbreeding and genomic heterozygosity affected maternal and progeny fitness within and among 12 wild populations of Impatiens capensis. We quantified maternal fitness in home sites, maternal multilocus heterozygosity (using 12,560 single-nucleotide polymorphisms), and lifetime fitness of selfed and predominantly outcrossed progeny in a common garden. These populations spanned a broad range of individual-level (fi = -0.17-0.98) and population-level inbreeding (FIS = 0.25-0.87). More inbred populations contained fewer polymorphic loci, less fecund mothers, and smaller progeny, suggesting higher fixed loads. However, despite appreciable ID (mean: 8.8 lethal equivalents per gamete), ID did not systematically decline in more inbred population. More heterozygous mothers were more fecund and produced fitter progeny in outcrossed populations, but this pattern unexpectedly reversed in highly inbred populations. These observations suggest that persistent overdominance or some other force acts to forestall purging and fixation in these populations.


Assuntos
Impatiens , Endogamia
4.
Nat Commun ; 13(1): 7837, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550094

RESUMO

Ungulate populations are increasing across Europe with important implications for forest plant communities. Concurrently, atmospheric nitrogen (N) deposition continues to eutrophicate forests, threatening many rare, often more nutrient-efficient, plant species. These pressures may critically interact to shape biodiversity as in grassland and tundra systems, yet any potential interactions in forests remain poorly understood. Here, we combined vegetation resurveys from 52 sites across 13 European countries to test how changes in ungulate herbivory and eutrophication drive long-term changes in forest understorey communities. Increases in herbivory were associated with elevated temporal species turnover, however, identities of winner and loser species depended on N levels. Under low levels of N-deposition, herbivory favored threatened and small-ranged species while reducing the proportion of non-native and nutrient-demanding species. Yet all these trends were reversed under high levels of N-deposition. Herbivores also reduced shrub cover, likely exacerbating N effects by increasing light levels in the understorey. Eutrophication levels may therefore determine whether herbivory acts as a catalyst for the "N time bomb" or as a conservation tool in temperate forests.


Assuntos
Florestas , Herbivoria , Plantas , Biodiversidade , Nitrogênio
5.
Am J Bot ; 109(12): 1991-2005, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36254552

RESUMO

PREMISE: Numerous processes influence plant distributions and co-occurrence patterns, including ecological sorting, limiting similarity, and stochastic effects. To discriminate among these processes and determine the spatial scales at which they operate, we investigated how functional traits and phylogenetic relatedness influence the distribution of temperate forest herbs. METHODS: We surveyed understory plant communities across 257 forest stands in Wisconsin and Michigan (USA) and applied Bayesian phylogenetic linear mixed-effects models (PGLMMs) to quantify how functional traits and phylogenetic relatedness influence the environmental distribution of 139 herbaceous plant species along broad edaphic, climatic, and light gradients. These models also allowed us to test how functional and phylogenetic similarity affect species co-occurrence within microsites. RESULTS: Leaf height, specific leaf area, and seed mass all influenced individualistic plant distributions along landscape-scale gradients in soil texture, soil fertility, light availability, and climate. In contrast, phylogenetic relationships did not consistently predict species-environment relationships. Neither functionally similar nor phylogenetically related herbs segregated among microsites within forest stands. CONCLUSIONS: Trait-mediated ecological sorting appears to drive temperate-forest community assembly, generating individualistic plant distributions along regional environmental gradients. This finding links classic studies in plant ecology and prior research in plant physiological ecology to current trait-based approaches in community ecology. However, our results fail to support the common assumption that limiting similarity governs local plant co-occurrences. Strong ecological sorting among forest stands coupled with stochastic fine-scale interactions among species appear to weaken deterministic, niche-based assembly processes at local scales.


Assuntos
Ecologia , Florestas , Filogenia , Teorema de Bayes , Plantas
6.
Am J Bot ; 109(1): 99-114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34643270

RESUMO

PREMISE: Habitat fragmentation generates molecular genetic divergence among isolated populations, but few studies have assessed phenotypic divergence and fitness in populations where the genetic consequences of habitat fragmentation are known. Phenotypic divergence could reflect plasticity, local adaptation, and/or genetic drift. METHODS: We examined patterns and potential drivers of phenotypic divergence among 12 populations of jewelweed (Impatiens capensis) that show strong molecular genetic signals of isolation and drift among fragmented habitats. We measured morphological and reproductive traits in both maternal plants within natural populations and their self-fertilized progeny grown together in a common garden. We also quantified environmental divergence between home sites and the common garden. RESULTS: Populations with less molecular genetic variation expressed less maternal phenotypic variation. Progeny in the common garden converged in phenotypes relative to their wild mothers but retained among-population differences in morphology, survival, and reproduction. Among-population phenotypic variance was 3-10× greater in home sites than in the common garden for 6 of 7 morphological traits measured. Patterns of phenotypic divergence paralleled environmental gradients in ways suggestive of adaptation. Progeny resembled their mothers less as the environmental distance between their home site and the common garden increased. CONCLUSIONS: Despite strong molecular signatures of isolation and drift, phenotypic differences among these Impatiens populations appear to reflect both adaptive quantitative genetic divergence and plasticity. Quantifying the extent of local adaptation and plasticity and how these covary with molecular and phenotypic variation help us predict when populations may lose their adaptive capacity.


Assuntos
Impatiens , Deriva Genética , Variação Genética , Fenótipo , Plásticos , Seleção Genética
7.
Ecology ; 103(1): e03527, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469586

RESUMO

Wisconsin's plant communities are responding to shifting disturbance regimes, habitat fragmentation, aerial nitrogen deposition, exotic species invasions, ungulate herbivory, and successional processes. To better understand how plant functional traits mediate species' responses to changing environmental conditions, we collected a large set of functional trait data for vascular plant species occupying Wisconsin forests and grasslands. We used standard protocols to make 76,213 measurements of 34 quantitative traits. These data provide rich information on genome size, physical leaf traits (length, width, circularity, thickness, dry matter content, specific leaf area, etc.), chemical leaf traits (carbon, nitrogen, phosphorus, potassium, calcium, magnesium, ash), life history traits (vegetative and flower heights, seed mass), and traits affecting plant palatability (leaf fiber, fat, and lignin). These trait values derive from replicate measurements on 12+ individuals of each species from multiple sites and 45+ individuals for a selected subset of species. Measurements typically reflect values for individuals although some chemical traits involved composite samples from several individuals at the same site. We also qualitatively characterized each species by plant family, woodiness, functional group, and Raunkiaer lifeform. These data allow us to characterize trait dimensionality, differentiation, and covariation among temperate plant species (e.g., leaf and stem economic syndromes). We can also characterize species' responses to environmental gradients and drivers of ecological change. With survey and resurvey data available from >400 sites in Wisconsin, we can analyze variation in community trait distributions and diversity over time and space. These data therefore allow us to assess how trait divergence vs. convergence affects community assembly and how traits may be related to half-century shifts in the distribution and abundance of these species. The data set can be used for non-commercial purposes. The data set is licensed as follows: CC-By Attribution 4.0 International. We request users cite both the OSF data set and this Ecology data paper publication.


Assuntos
Florestas , Plantas/classificação , América do Norte , Folhas de Planta
8.
Andrology ; 10(2): 367-376, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542939

RESUMO

BACKGROUND: Polyphenylene carboxymethylene (PPCM) sodium salt is a promising multipurpose technology for prevention of both sexually transmitted infections (STIs) and pregnancy. In preclinical studies, PPCM has demonstrated significant (1) antimicrobial activity against several important viral and bacterial pathogens and (2) contraceptive activity associated with premature acrosome loss. OBJECTIVE: To further evaluate a vaginal antimicrobial compound as a contraceptive agent in preclinical studies utilizing a repurposed hyaluronan binding assay (HBA). MATERIALS AND METHODS: Semen samples containing either neat semen or washed spermatozoa were treated with increasing concentrations of PPCM or calcium ionophore A23187 (positive control). Sperm inactivation was measured by two methods: (1) double acrosome staining (AS), and (2) a hyaluronan binding assay (HBA® ). Percentage of inactivated sperm was compared between untreated control sperm and those treated with PPCM or A23187. RESULTS: PPCM had a significant (p < 0.05) and dose-dependent effect on sperm inactivation in both assays, with HBA detecting a higher proportion of inactivated sperm than AS. PPCM did not affect sperm motility and exhibited equivalent responses in the neat and washed samples. DISCUSSION: Both HBA and AS confirmed that spermatozoa were rapidly inactivated at PPCM concentrations likely present in the vagina under actual use conditions and in a time-frame comparable to in vivo migration of spermatozoa out of seminal plasma into cervical mucus. CONCLUSION: PPCM vaginal gel may provide contraceptive protection as well as help with STI prevention. HBA may be a sensitive and much needed biomarker for sperm activity in future contraceptive development.


Assuntos
Acrossomo/efeitos dos fármacos , Anticoncepcionais/farmacologia , Polímeros/farmacologia , Espermatozoides/efeitos dos fármacos , Cremes, Espumas e Géis Vaginais/farmacologia , Calcimicina/farmacologia , Feminino , Humanos , Ácido Hialurônico , Masculino , Gravidez , Sêmen/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos
9.
Heredity (Edinb) ; 127(4): 347-356, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34188195

RESUMO

The magnitude of inbreeding depression (ID) varies unpredictably among environments. ID often increases in stressful environments suggesting that these expose more deleterious alleles to selection or increase their effects. More simply, ID could increase under conditions that amplify phenotypic variation (CV²), e.g., by accentuating size hierarchies among plants. These mechanisms are difficult to distinguish when stress increases both ID and phenotypic variation. We grew in- and outbred progeny of Mimulus guttatus under six abiotic stress treatments (control, waterlogging, drought, nutrient deficiency, copper addition, and clipping) with and without competition by the grass Poa palustris. ID differed greatly among stress treatments with δ varying from 7% (control) to 61% (waterlogging) but did not consistently increase with stress intensity. Poa competition increased ID under nutrient deficiency but not other stresses. Analyzing effects of initial size on performance of outbred plants suggests that under some conditions (low N, clipping) competition increased ID by amplifying initial size differences. In other cases (e.g., high ID under waterlogging), particular environments amplified the deleterious genetic effects of inbreeding suggesting differential gene expression. Interestingly, conditions that increased the phenotypic variability of inbred progeny regularly increased ID whereas variability among outbred progeny showed no relationship to ID. Our study reconciles the stress- and phenotypic variability hypotheses by demonstrating how specific conditions (rather than stress per se) act to increase ID. Analyzing CV² separately in inbred and outbred progeny while including effects of initial plant size improve our ability to predict how ID and gene expression vary across environments.


Assuntos
Depressão por Endogamia , Alelos , Secas , Endogamia , Estresse Fisiológico
10.
Evolution ; 75(4): 779-793, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33598971

RESUMO

Darwin spent years investigating the effects of self-fertilization, concluding that "nature abhors perpetual self-fertilization." Given that selection purges inbred populations of strongly deleterious mutations and drift fixes mild mutations, why does inbreeding depression (ID) persist in highly inbred taxa and why do no purely selfing taxa exist? Background selection, associations and interference among loci, and drift within small inbred populations all limit selection while often increasing fixation. These mechanisms help to explain why more inbred populations in most species consistently show more fixed load. This drift load is manifest in the considerable heterosis regularly observed in between-population crosses. Such heterosis results in subsequent high ID, suggesting a mechanism by which small populations could retain variation and inbreeding load. Multiple deleterious recessive mutations linked in repulsion generate pseudo-overdominance. Many tightly linked load loci could generate a balanced segregating load high enough to sustain ID over many generations. Such pseudo-overdominance blocks (or "PODs") are more likely to occur in regions of low recombination. They should also result in clear genetic signatures including genomic hotspots of heterozygosity; distinct haplotypes supporting alleles at intermediate frequency; and high linkage disequilibrium in and around POD regions. Simulation and empirical studies tend to support these predictions. Additional simulations and comparative genomic analyses should explore POD dynamics in greater detail to resolve whether PODs exist in sufficient strength and number to account for why ID and load persist within inbred lineages.


Assuntos
Genética Populacional , Vigor Híbrido , Depressão por Endogamia , Modelos Genéticos , Alelos , Simulação por Computador , Frequência do Gene , Deriva Genética , Haplótipos , Mutação , Seleção Genética
11.
J Environ Manage ; 284: 112019, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33540198

RESUMO

Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the 'dead zone' in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions - over four times that of concentration increases - implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads.


Assuntos
Monitoramento Ambiental , Fósforo , Agricultura , Animais , Golfo do México , Fósforo/análise , Movimentos da Água , Wisconsin
12.
Am J Bot ; 107(12): 1677-1692, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315246

RESUMO

PREMISE: We tested 25 classic and novel hypotheses regarding trait-origin, trait-trait, and trait-environment relationships to account for flora-wide variation in life history, habit, and especially reproductive traits using a plastid DNA phylogeny of most native (96.6%, or 1494/1547 species) and introduced (87.5%, or 690/789 species) angiosperms in Wisconsin, USA. METHODS: We assembled data on life history, habit, flowering, dispersal, mating system, and occurrence across open/closed/mixed habitats across species in the state phylogeny. We used phylogenetically structured analyses to assess the strength and statistical significance of associations predicted by our models. RESULTS: Introduced species are more likely to be annual herbs, occupy open habitats, have large, visually conspicuous, hermaphroditic flowers, and bear passively dispersed seeds. Among native species, hermaphroditism is associated with larger, more conspicuous flowers; monoecy is associated with small, inconspicuous flowers and passive seed dispersal; and dioecy is associated with small, inconspicuous flowers and fleshy fruits. Larger flowers with more conspicuous colors are more common in open habitats, and in understory species flowering under open (spring) canopies; fleshy fruits are more common in closed habitats. Wind pollination may help favor dioecy in open habitats. CONCLUSIONS: These findings support predictions regarding how breeding systems depend on flower size, flower color, and fruit type, and how those traits depend on habitat. This study is the first to combine flora-wide phylogenies with complete trait databases and phylogenetically structured analyses to provide powerful tests of evolutionary hypotheses about reproductive traits and their variation with geographic source, each other, and environmental conditions.


Assuntos
Magnoliopsida , Flores , Magnoliopsida/genética , Melhoramento Vegetal , Polinização , História Reprodutiva , Wisconsin
13.
Biol Reprod ; 103(2): 299-309, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32469052

RESUMO

Current modern contraceptives rely heavily on the use of hormones. These birth control drug products, including pills, patches, injections, and IUDS, have been extremely beneficial to millions of women and their families over the past 50 years. But a surprisingly high number of women abandon such modern methods, many because they cannot tolerate the side effects and others because they have medical issues for which hormonal methods are contraindicated. In addition, modern hormonal methods are simply not available to many women. The extent of this problem is steadily becoming more apparent. We present the case for developing simple nonhormonal vaginal products that women can use when needed, ideal products that are multipurpose and offer both contraception and sexually transmitted disease protection. Gel-based vaginal products are particularly well suited for this purpose. Gels are easy to use, highly acceptable to many women, and can be safely formulated to enhance natural vaginal defenses against infection. However, the development of a new chemical entity for this application faces significant technical and regulatory hurdles. These challenges and our solutions are described for polyphenylene carboxymethylene (PPCM), a novel topical drug in a vaginal gel nearing human clinical trials. We have advanced PPCM from benchtop to IND-enabling studies and provide a brief description of the complex development process. We also describe a simple lab assay which can be used as a biomarker for contraceptive activity to enable pharmacodynamic studies in vaginal contraceptive development, both preclinically and in early human clinical trials.


Assuntos
Anticoncepção/métodos , Infecções Sexualmente Transmissíveis/prevenção & controle , Administração Intravaginal , Feminino , Géis , Humanos , Gravidez
14.
Nat Ecol Evol ; 4(6): 802-808, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32284580

RESUMO

Biodiversity time series reveal global losses and accelerated redistributions of species, but no net loss in local species richness. To better understand how these patterns are linked, we quantify how individual species trajectories scale up to diversity changes using data from 68 vegetation resurvey studies of seminatural forests in Europe. Herb-layer species with small geographic ranges are being replaced by more widely distributed species, and our results suggest that this is due less to species abundances than to species nitrogen niches. Nitrogen deposition accelerates the extinctions of small-ranged, nitrogen-efficient plants and colonization by broadly distributed, nitrogen-demanding plants (including non-natives). Despite no net change in species richness at the spatial scale of a study site, the losses of small-ranged species reduce biome-scale (gamma) diversity. These results provide one mechanism to explain the directional replacement of small-ranged species within sites and thus explain patterns of biodiversity change across spatial scales.


Assuntos
Ecossistema , Florestas , Biodiversidade , Europa (Continente) , Plantas
15.
Biol Rev Camb Philos Soc ; 95(3): 782-801, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32043747

RESUMO

Human-driven species annihilations loom as a major crisis. However the recovery of deer and wolf populations in many parts of the northern hemisphere has resulted in conflicts and controversies rather than in relief. Both species interact in complex ways with their environment, each other, and humans. We review these interactions in the context of the ecological and human costs and benefits associated with these species. We integrate scattered information to widen our perspective on the nature and perception of these costs and benefits and how they link to each other and ongoing controversies regarding how we manage deer and wolf populations. After revisiting the ecological roles deer and wolves play in contemporary ecosystems, we explore how they interact, directly and indirectly, with human groups including farmers, foresters, shepherds, and hunters. Interactions with deer and wolves generate various axes of tension, posing both ecological and sociological challenges. Resolving these tensions and conflicts requires that we address key questions using integrative approaches: what are the ecological consequences of deer and wolf recovery? How do they influence each other? What are the social and socio-ecological consequences of large deer populations and wolf presence? Finally, what key obstacles must be overcome to allow deer, wolves and people to coexist? Reviewing contemporary ecological and sociological results suggests insights and ways to improve our understanding and resolve long-standing challenges to coexistence. We should begin by agreeing to enhance aggregate benefits while minimizing the collective costs we incur by interacting with deer and wolves. We should also view these species, and ourselves, as parts of integrated ecosystems subject to long-term dynamics. If co-existence is our goal, we need deer and wolves to persevere in ways that are compatible with human interests. Our human interests, however, should be inclusive and fairly value all the costs and benefits deer and wolves entail including their intrinsic value. Shifts in human attitudes and cultural learning that are already occurring will reshape our ecological interactions with deer and wolves.


Assuntos
Cervos/fisiologia , Interação Humano-Animal , Lobos/fisiologia , Agricultura/economia , Animais , Análise Custo-Benefício , Europa (Continente)/epidemiologia , Agricultura Florestal/economia , Humanos , América do Norte/epidemiologia , Comportamento Predatório/fisiologia , Segurança/economia , Doenças Transmitidas por Carrapatos/economia , Doenças Transmitidas por Carrapatos/epidemiologia , Doença de Emaciação Crônica/economia , Doença de Emaciação Crônica/epidemiologia
16.
Nat Plants ; 5(7): 697-705, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263243

RESUMO

Atmospheric nitrogen and sulfur pollution increased over much of the United States during the twentieth century from fossil fuel combustion and industrial agriculture. Despite recent declines, nitrogen and sulfur deposition continue to affect many plant communities in the United States, although which species are at risk remains uncertain. We used species composition data from >14,000 survey sites across the contiguous United States to evaluate the association between nitrogen and sulfur deposition and the probability of occurrence for 348 herbaceous species. We found that the probability of occurrence for 70% of species was negatively associated with nitrogen or sulfur deposition somewhere in the contiguous United States (56% for N, 51% for S). Of the species, 15% and 51% potentially decreased at all nitrogen and sulfur deposition rates, respectively, suggesting thresholds below the minimum deposition they receive. Although more species potentially increased than decreased with nitrogen deposition, increasers tended to be introduced and decreasers tended to be higher-value native species. More vulnerable species tended to be shorter with lower tissue nitrogen and magnesium. These relationships constitute predictive equations to estimate critical loads. These results demonstrate that many herbaceous species may be at risk from atmospheric deposition and can inform improvements to air quality policies in the United States and globally.


Assuntos
Nitrogênio/química , Plantas/química , Enxofre/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/metabolismo , Poluição do Ar , Monitoramento Ambiental , Cinética , Nitrogênio/metabolismo , Plantas/classificação , Plantas/metabolismo , Enxofre/metabolismo , Estados Unidos
17.
Mol Ecol ; 28(10): 2459-2475, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30851213

RESUMO

Landscape features often shape patterns of gene flow and genetic differentiation in plant species. Populations that are small and isolated enough also become subject to genetic drift. We examined patterns of gene flow and differentiation among 12 floodplain populations of the selfing annual jewelweed (Impatiens capensis Meerb.) nested within four river systems and two major watersheds in Wisconsin, USA. Floodplain forests and marshes provide a model system for assessing the effects of habitat fragmentation within agricultural/urban landscapes and for testing whether rivers act to genetically connect dispersed populations. We generated a panel of 12,856 single nucleotide polymorphisms and assessed genetic diversity, differentiation, gene flow, and drift. Clustering methods revealed strong population genetic structure with limited admixture and highly differentiated populations (mean multilocus FST  = 0.32, FST ' = 0.33). No signals of isolation by geographic distance or environment emerged, but alleles may flow along rivers given that genetic differentiation increased with river distance. Differentiation also increased in populations with fewer private alleles (R2  = 0.51) and higher local inbreeding (R2  = 0.22). Populations varied greatly in levels of local inbreeding (FIS  = 0.2-0.9) and FIS increased in more isolated populations. These results suggest that genetic drift dominates other forces in structuring these Impatiens populations. In rapidly changing environments, species must migrate or genetically adapt. Habitat fragmentation limits both processes, potentially compromising the ability of species to persist in fragmented landscapes.


Assuntos
Deriva Genética , Variação Genética , Genética Populacional , Impatiens/genética , Alelos , Ecossistema , Florestas , Fluxo Gênico/genética , Impatiens/crescimento & desenvolvimento , Repetições de Microssatélites/genética , Filogenia
18.
Am J Bot ; 105(11): 1938-1950, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30408151

RESUMO

PREMISE OF THE STUDY: We used spatial phylogenetics to analyze the assembly of the Wisconsin flora, linking processes of dispersal and niche evolution to spatial patterns of floristic and phylogenetic diversity and testing whether phylogenetic niche conservatism can account for these patterns. METHODS: We used digitized records and a new molecular phylogeny for 93% of vascular plants in Wisconsin to estimate spatial variation in species richness and phylogenetic α and ß diversity in a native flora shaped mainly by postglacial dispersal and response to environmental gradients. We developed distribution models for all species and used these to infer fine-scale variation in potential diversity, phylogenetic distance, and interspecific range overlaps. We identified 11 bioregions based on floristic composition, mapped areas of neo- and paleo-endemism to establish new conservation priorities and predict how community-assembly patterns should shift with climatic change. KEY RESULTS: Spatial phylogenetic turnover most strongly reflects differences in temperature and spatial distance. For all vascular plants, assemblages shift from phylogenetically clustered to overdispersed northward, contrary to most other studies. This pattern is lost for angiosperms alone, illustrating the importance of phylogenetic scale. CONCLUSIONS: Species ranges and assemblage composition appear driven primarily by phylogenetic niche conservatism. Closely related species are ecologically similar and occupy similar territories. The average level and geographic structure of plant phylogenetic diversity within Wisconsin are expected to greatly decline over the next half century, while potential species richness will increase throughout the state. Our methods can be applied to allochthonous communities throughout the world.


Assuntos
Evolução Biológica , Ecossistema , Traqueófitas/genética , Mudança Climática , Previsões , Filogeografia , Wisconsin
19.
Environ Pollut ; 242(Pt B): 1787-1799, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30115529

RESUMO

Understorey communities can dominate forest plant diversity and strongly affect forest ecosystem structure and function. Understoreys often respond sensitively but inconsistently to drivers of ecological change, including nitrogen (N) deposition. Nitrogen deposition effects, reflected in the concept of critical loads, vary greatly not only among species and guilds, but also among forest types. Here, we characterize such context dependency as driven by differences in the amounts and forms of deposited N, cumulative deposition, the filtering of N by overstoreys, and available plant species pools. Nitrogen effects on understorey trajectories can also vary due to differences in surrounding landscape conditions; ambient browsing pressure; soils and geology; other environmental factors controlling plant growth; and, historical and current disturbance/management regimes. The number of these factors and their potentially complex interactions complicate our efforts to make simple predictions about how N deposition affects forest understoreys. We review the literature to examine evidence for context dependency in N deposition effects on forest understoreys. We also use data from 1814 European temperate forest plots to test the ability of multi-level models to characterize context-dependent understorey responses across sites that differ in levels of N deposition, community composition, local conditions and management history. This analysis demonstrated that historical management, and plot location on light and pH-fertility gradients, significantly affect how understorey communities respond to N deposition. We conclude that species' and communities' responses to N deposition, and thus the determination of critical loads, vary greatly depending on environmental contexts. This complicates our efforts to predict how N deposition will affect forest understoreys and thus how best to conserve and restore understorey biodiversity. To reduce uncertainty and incorporate context dependency in critical load setting, we should assemble data on underlying environmental conditions, conduct globally distributed field experiments, and analyse a wider range of habitat types.


Assuntos
Florestas , Nitrogênio/análise , Biodiversidade , Ecossistema , Ciclo do Nitrogênio , Plantas , Solo , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...