Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1117326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998455

RESUMO

Purpose: Ionizing radiation (IR) enhances the migratory capacity of cancer cells. Here we investigate in non-small-cell-lung-cancer (NSCLC) cells a novel link between IR-enhanced ADAM17 activity and the non-canonical pathway of EphA2 in the cellular stress response to irradiation. Methods: Cancer cell migration in dependence of IR, EphA2, and paracrine signaling mediated by ADAM17 was determined using transwell migration assays. Changes of EphA2 pS897 and mRNA expression levels upon different ADAM17-directed treatment strategies, including the small molecular inhibitor TMI-005, the monoclonal antibody MEDI3622, and shRNAs, were mechanistically investigated. ADAM17-mediated release and cleavage of the EphA2 ligand ephrin-A1 was measured using ELISA and an acellular cleavage assay. Results: Irradiation with 5 Gy enhanced tumor cell migration of NSCLC NCI-H358 cells in dependence of EphA2. At the same time, IR increased growth factor-induced EphA2 S897 phosphorylation via auto- and paracrine signaling. Genetic and pharmaceutical downregulation of ADAM17 activity abrogated growth factor (e.g. amphiregulin) release, which reduced MAPK pathway-mediated EphA2 S897 phosphorylation in an auto- and paracrine way (non-canonical EphA2-pathway) in NCI-H358 and A549 cells. These signaling processes were associated with reduced cell migration towards conditioned media derived from ADAM17-deficient cells. Interestingly, ADAM17 inhibition with the small molecular inhibitor TMI-005 led to the internalization and proteasomal degradation of EphA2, which was rescued by amphiregulin or MG-132 treatment. In addition, ADAM17 inhibition also abrogated ephrin-A1 cleavage and thereby interfered with the canonical EphA2-pathway. Conclusion: We identified ADAM17 and the receptor tyrosine kinase EphA2 as two important drivers for (IR-) induced NSCLC cell migration and described a unique interrelation between ADAM17 and EphA2. We demonstrated that ADAM17 influences both, EphA2 (pS897) and its GPI-anchored ligand ephrin-A1. Using different cellular and molecular readouts, we generated a comprehensive picture of how ADAM17 and IR influence the EphA2 canonical and non-canonical pathway in NSCLC cells.

2.
Blood ; 141(9): 1023-1035, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35981498

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is often overexpressed or constitutively activated by internal tandem duplication (ITD) and tyrosine kinase domain (TKD) mutations in acute myeloid leukemia (AML). Despite the use of receptor tyrosine kinase inhibitors (TKI) in FLT3-ITD-positive AML, the prognosis of patients is still poor, and further improvement of therapy is required. Targeting FLT3 independent of mutations by antibody-drug conjugates (ADCs) is a promising strategy for AML therapy. Here, we report the development and preclinical characterization of a novel FLT3-targeting ADC, 20D9-ADC, which was generated by applying the innovative P5 conjugation technology. In vitro, 20D9-ADC mediated potent cytotoxicity to Ba/F3 cells expressing transgenic FLT3 or FLT3-ITD, to AML cell lines, and to FLT3-ITD-positive patient-derived xenograft AML cells. In vivo, 20D9-ADC treatment led to a significant tumor reduction and even durable complete remission in AML xenograft models. Furthermore, 20D9-ADC demonstrated no severe hematotoxicity in in vitro colony formation assays using concentrations that were cytotoxic in AML cell line treatment. The combination of 20D9-ADC with the TKI midostaurin showed strong synergy in vitro and in vivo, leading to reduction of aggressive AML cells below the detection limit. Our data indicate that targeting FLT3 with an advanced new-generation ADC is a promising and potent antileukemic strategy, especially when combined with FLT3-TKI in FLT3-ITD-positive AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação
3.
Radiat Oncol ; 17(1): 72, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410422

RESUMO

OBJECTIVE: Hypersensitivity towards proton versus photon irradiation was demonstrated in homologous recombination repair (HRR)-deficient cell lines. Hence, combined treatment concepts targeting HRR provide a rational for potential pharmaceutical exploitation. The HSP90 inhibitor ganetespib (STA-9090) downregulates a multitude of HRR-associated proteins and sensitizes for certain chemotherapeutics. Thus, the radiosensitizing effect of HSP90-inhibiting ganetespib was investigated for reference photon irradiation and proton irradiation at a proximal and distal position in a spread-out Bragg peak (SOBP). METHODS: A549 and FaDu cells were treated with low-dose (2 nM resp. 1 nM) ganetespib and irradiated with 200 kV photons. Proton irradiation was performed at a proximal and a distal position within a SOBP, with corresponding dose-averaged linear-energy transfer (LETD) values of 2.1 and 4.5 keV/µm, respectively. Cellular survival data was fitted to the linear-quadratic model to calculate relative biological effectiveness (RBE) and the dose-modifying factor (DMF). Additionally, A549 cells were treated with increasing doses of ganetespib and investigated by flow cytometry, immunoblotting, and immunofluorescence microscopy to investigate cell cycle distribution, Rad51 protein levels, and γH2AX foci, respectively. RESULTS: Low-dosed ganetespib significantly sensitized both cancer cell lines exclusively for proton irradiation at both investigated LETD, resulting in increased RBE values of 10-40%. In comparison to photon irradiation, the fraction of cells in S/G2/M phase was elevated in response to proton irradiation with 10 nM ganetespib consistently reducing this population. No changes in cell cycle distribution were detected in unirradiated cells by ganetespib alone. Protein levels of Rad51 are downregulated in irradiated A549 cells by 10 nM and also 2 nM ganetespib within 24 h. Immunofluorescence staining demonstrated similar induction and removal of γH2AX foci, irrespective of irradiation type or ganetespib administration. CONCLUSION: Our findings illustrate a proton-specific sensitizing effect of low-dosed ganetespib in both employed cell lines and at both investigated SOBP positions. We provide additional experimental data on cellular response and a rational for future combinatorial approaches with proton radiotherapy.


Assuntos
Neoplasias , Prótons , Relação Dose-Resposta à Radiação , Humanos , Neoplasias/radioterapia , Eficiência Biológica Relativa , Triazóis/farmacologia
4.
JMIR Ment Health ; 8(8): e28736, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34254939

RESUMO

BACKGROUND: Accumulating evidence suggests that the COVID-19 pandemic has negatively impacted the mental health of individuals. However, the susceptibility of individuals to be impacted by the pandemic is variable, suggesting potential influences of specific factors related to participants' demographics, attitudes, and practices. OBJECTIVE: We aimed to identify the factors associated with psychological symptoms related to the effects of the first wave of the pandemic in a multicountry cohort of internet users. METHODS: This study anonymously screened 13,332 internet users worldwide for acute psychological symptoms related to the COVID-19 pandemic from March 29 to April 14, 2020, during the first wave of the pandemic amidst strict lockdown conditions. A total of 12,817 responses were considered valid. Moreover, 1077 participants from Europe were screened a second time from May 15 to May 30, 2020, to ascertain the presence of psychological effects after the ease down of restrictions. RESULTS: Female gender, pre-existing psychiatric conditions, and prior exposure to trauma were identified as notable factors associated with increased psychological symptoms during the first wave of COVID-19 (P<.001). The same factors, in addition to being related to someone who died due to COVID-19 and using social media more than usual, were associated with persistence of psychological disturbances in the limited second assessment of European participants after the restrictions had relatively eased (P<.001). Optimism, ability to share concerns with family and friends like usual, positive prediction about COVID-19, and daily exercise were related to fewer psychological symptoms in both assessments (P<.001). CONCLUSIONS: This study highlights the significant impact of the COVID-19 pandemic at the worldwide level on the mental health of internet users and elucidates prominent associations with their demographics, history of psychiatric disease risk factors, household conditions, certain personality traits, and attitudes toward COVID-19.

5.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208595

RESUMO

Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization. An extensive literature review was conducted in PubMed, including papers on radiomics and a selected set of clinically relevant and commonly used tumor molecular markers. We summarized our findings based on different cancer entities, additionally evaluating the effect of different modalities for the prediction of biomarkers at each tumor site. Results suggest the existence of an association between the studied biomarkers and radiomics from different modalities and different tumor sites, even though a larger number of multi-center studies are required to further validate the reported outcomes.

6.
Front Oncol ; 11: 676583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055644

RESUMO

Besides cytotoxic DNA damage irradiation of tumor cells triggers multiple intra- and intercellular signaling processes, that are part of a multilayered, treatment-induced stress response at the unicellular and tumor pathophysiological level. These processes are intertwined with intrinsic and acquired resistance mechanisms to the toxic effects of ionizing radiation and thereby co-determine the tumor response to radiotherapy. Proteolysis of structural elements and bioactive signaling moieties represents a major class of posttranslational modifications regulating intra- and intercellular communication. Plasma membrane-located and secreted metalloproteinases comprise a family of metal-, usually zinc-, dependent endopeptidases and sheddases with a broad variety of substrates including components of the extracellular matrix, cyto- and chemokines, growth and pro-angiogenic factors. Thereby, metalloproteinases play an important role in matrix remodeling and auto- and paracrine intercellular communication regulating tumor growth, angiogenesis, immune cell infiltration, tumor cell dissemination, and subsequently the response to cancer treatment. While metalloproteinases have long been identified as promising target structures for anti-cancer agents, previous pharmaceutical approaches mostly failed due to unwanted side effects related to the structural similarities among the multiple family members. Nevertheless, targeting of metalloproteinases still represents an interesting rationale alone and in combination with other treatment modalities. Here, we will give an overview on the role of metalloproteinases in the irradiated tumor microenvironment and discuss the therapeutic potential of using more specific metalloproteinase inhibitors in combination with radiotherapy.

7.
Cancer Res Commun ; 1(3): 164-177, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-36860547

RESUMO

The cellular response to ionizing radiation (IR) depends on tumor cell and microenvironmental factors. Here, we investigated the role of IR-induced ADAM17 matrix metalloproteinase activity for the intercellular communication between tumor cells and the tumor vasculature in non-small cell lung cancer (NSCLC) tumor models. Factors shed by ADAM17 from NSCLC tumor cells (A549, H358) and relevant for endothelial cell migration were investigated using transwell migration assays, ELISA, and flow cytometry. Tumor angiogenesis-related endpoints were analyzed with the chorio-allantoic membrane assay and in murine NSCLC tumor models. Efficacy-oriented experiments were performed in a murine orthotopic NSCLC tumor model using irradiation with an image-guided small-animal radiotherapy platform alone and in combination with the novel ADAM17-directed antibody MEDI3622. In vitro, VEGF was identified as the major factor responsible for IR-induced and ADAM17-dependent endothelial cell migration toward attracting tumor cells. IR strongly enhanced tumor cell-associated ADAM17 activity, released VEGF in an ADAM17-dependent manner, and thereby coordinated the communication between tumor and endothelial cells. In vivo, tumor growth and microvessel size and density were strongly decreased in response to the combined treatment modality of IR and MEDI3622 but not by either treatment modality alone and thus suggest that the supra-additive effect of the combined treatment modality is in part due to abrogation of the ADAM17-mediated IR-induced protective effect on the tumor vasculature. Furthermore, we demonstrate that the novel ADAM17-inhibitory antibody MEDI3622 potently improves the radiotherapy response of NSCLC. Significance: The tumor response to radiotherapy is influenced by several factors of the tumor microenvironment. We demonstrate that inhibition of the sheddase ADAM17 by the novel antibody MEDI3622 reduces IR-induced VEGF release from tumor cells relevant for endothelial cell migration and vasculature protection, thereby enhancing radiotherapy treatment outcome of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Pulmonares/radioterapia , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Front Psychiatry ; 11: 581426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391049

RESUMO

Objectives: To ascertain factors associated with worsening of psychiatric conditions during the coronavirus disease 2019 (COVID-19) pandemic. Methods: This study anonymously examined 2,734 psychiatric patients worldwide for worsening of their preexisting psychiatric conditions during the COVID-19 pandemic. An independent clinical investigation of 318 psychiatric patients from United States was used for verification. Results: Valid responses mainly from 12 featured countries indicated self-reported worsening of psychiatric conditions in two-thirds of the patients assessed that was through their significantly higher scores on scales for general psychological disturbance, posttraumatic stress disorder, and depression. Female gender, feeling no control of the situation, reporting dissatisfaction with the response of the state during the COVID-19 pandemic, and reduced interaction with family and friends increased the worsening of preexisting psychiatric conditions, whereas optimism, ability to share concerns with family and friends, and using social media like usual were associated with less worsening. An independent clinical investigation from the United States confirmed worsening of psychiatric conditions during the COVID-19 pandemic based on identification of new symptoms that necessitated clinical interventions such as dose adjustment or starting new medications in more than half of the patients. Conclusions: More than half of the patients are experiencing worsening of their psychiatric conditions during the COVID-19 pandemic.

9.
Br J Radiol ; 93(1107): 20190494, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31687835

RESUMO

Clinical parameters and empirical evidence are the primary determinants for current treatment planning in radiation oncology. Personalized medicine in radiation oncology is only at the very beginning to take the genetic background of a tumor entity into consideration to define an individual treatment regimen, the total dose or the combination with a specific anticancer agent. Likewise, stratification of patients towards proton radiotherapy is linked to its physical advantageous energy deposition at the tumor site with minimal healthy tissue being co-irradiated distal to the target volume. Hence, the fact that photon and proton irradiation also induce different qualities of DNA damages, which require differential DNA damage repair mechanisms has been completely neglected so far. These subtle differences could be efficiently exploited in a personalized treatment approach and could be integrated into personalized treatment planning. A differential requirement of the two major DNA double-strand break repair pathways, homologous recombination and non-homologous end joining, was recently identified in response to proton and photon irradiation, respectively, and subsequently influence the mode of ionizing radiation-induced cell death and susceptibility of tumor cells with defects in DNA repair machineries to either quality of ionizing radiation.This review focuses on the differential DNA-damage responses and subsequent biological processes induced by photon and proton irradiation in dependence of the genetic background and discusses their impact on the unicellular level and in the tumor microenvironment and their implications for combined treatment modalities.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Fótons/uso terapêutico , Medicina de Precisão , Terapia com Prótons , Eficiência Biológica Relativa , Absorção de Radiação , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral/efeitos da radiação , Terapia Combinada , Reparo do DNA por Junção de Extremidades , Humanos , Transferência Linear de Energia , Neoplasias/genética , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Tolerância a Radiação/genética , Radiação Ionizante , Microambiente Tumoral
10.
Chem Sci ; 8(5): 3471-3478, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507719

RESUMO

The broad substrate tolerance of tubulin tyrosine ligase is the basic rationale behind its wide applicability for chemoenzymatic protein functionalization. In this context, we report that the wild-type enzyme enables ligation of various unnatural amino acids that are substantially bigger than and structurally unrelated to the natural substrate, tyrosine, without the need for extensive protein engineering. This unusual substrate flexibility is due to the fact that the enzyme's catalytic pocket forms an extended cavity during ligation, as confirmed by docking experiments and all-atom molecular dynamics simulations. This feature enabled one-step C-terminal biotinylation and fluorescent coumarin labeling of various functional proteins as demonstrated with ubiquitin, an antigen binding nanobody, and the apoptosis marker Annexin V. Its broad substrate tolerance establishes tubulin tyrosine ligase as a powerful tool for in vitro enzyme-mediated protein modification with single functional amino acids in a specific structural context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...