Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1098175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818870

RESUMO

There is a large demand to reduce inputs for current crop production, particularly phosphate and nitrogen inputs which are the two most frequently added supplements to agricultural production. Gene characterization is often limited to the native species from which it was identified, but may offer benefits to other species. To understand if the rice gene Phosphate Starvation Tolerance 1 (PSTOL) OsPSTOL, a gene identified from rice which improves tolerance to low P growth conditions, might improve performance and provide the same benefit in wheat, OsPSTOL was transformed into wheat and expressed from a constitutive promoter. The ability of OsPSTOL to improve nutrient acquisition under low phosphate or low nitrogen was evaluated. Here we show that OsPSTOL works through a conserved pathway in wheat and rice to improve yields under both low phosphate and low nitrogen. This increase is yield is mainly driven by improved uptake from the soil driving increased biomass and ultimately increased seed number, but does not change the concentration of N in the straw or grain. Overexpression of OsPSTOL in wheat modifies N regulated genes to aid in this uptake whereas the putative homolog TaPSTOL does not suggesting that expression of OsPSTOL in wheat can help to improve yields under low input agriculture.

2.
Nat Commun ; 13(1): 6421, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307431

RESUMO

Many plants associate with arbuscular mycorrhizal fungi for nutrient acquisition, while legumes also associate with nitrogen-fixing rhizobial bacteria. Both associations rely on symbiosis signaling and here we show that cereals can perceive lipochitooligosaccharides (LCOs) for activation of symbiosis signaling, surprisingly including Nod factors produced by nitrogen-fixing bacteria. However, legumes show stringent perception of specifically decorated LCOs, that is absent in cereals. LCO perception in plants is activated by nutrient starvation, through transcriptional regulation of Nodulation Signaling Pathway (NSP)1 and NSP2. These transcription factors induce expression of an LCO receptor and act through the control of strigolactone biosynthesis and the karrikin-like receptor DWARF14-LIKE. We conclude that LCO production and perception is coordinately regulated by nutrient starvation to promote engagement with mycorrhizal fungi. Our work has implications for the use of both mycorrhizal and rhizobial associations for sustainable productivity in cereals.


Assuntos
Medicago truncatula , Micorrizas , Rhizobium , Medicago truncatula/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Micorrizas/fisiologia , Simbiose , Rhizobium/metabolismo , Nutrientes
3.
Biochem J ; 479(6): 805-823, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35298586

RESUMO

The regulation of lipid metabolism in oil seeds is still not fully understood and increasing our knowledge in this regard is of great economic, as well as intellectual, importance. Oilseed rape (Brassica napus) is a major global oil crop where increases in triacylglycerol (TAG) accumulation have been achieved by overexpression of relevant biosynthetic enzymes. In this study, we expressed Arabidopsis phospholipid: diacylglycerol acyltransferase (PDAT1), one of the two major TAG-forming plant enzymes in B. napus DH12075 to evaluate its effect on lipid metabolism in developing seeds and to estimate its flux control coefficient. Despite several-fold increase in PDAT activity, seeds of three independently generated PDAT transgenic events showed a small but consistent decrease in seed oil content and had altered fatty acid composition of phosphoglycerides and TAG, towards less unsaturation. Mass spectrometry imaging of seed sections confirmed the shift in lipid compositions and indicated that PDAT overexpression altered the distinct heterogeneous distributions of phosphatidylcholine (PC) molecular species. Similar, but less pronounced, changes in TAG molecular species distributions were observed. Our data indicate that PDAT exerts a small, negative, flux control on TAG biosynthesis and could have under-appreciated effects in fine-tuning of B. napus seed lipid composition in a tissue-specific manner. This has important implications for efforts to increase oil accumulation in similar crops.


Assuntos
Brassica napus , Brassica napus/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Sementes/metabolismo
4.
Commun Biol ; 5(1): 193, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241776

RESUMO

There is a strong pressure to reduce nitrogen (N) fertilizer inputs while maintaining or increasing current cereal crop yields. We show that overexpression of TaDWF4-B, the dominant shoot expressed homoeologue of OsDWF4, in wheat can increase plant productivity by up to 105% under a range of N levels on marginal soils, resulting in increased N use efficiency (NUE). We show that a two to four-fold increase in TaDWF4 transcript levels enhances the responsiveness of genes regulated by N. The productivity increases seen were primarily due to the maintenance of photosystem II operating efficiency and carbon assimilation in plants when grown under limiting N conditions and not an overall increase in photosynthesis capacity. The increased biomass production and yield per plant in TaDWF4 OE lines could be linked to modified carbon partitioning and changes in expression pattern of the growth regulator Target Of Rapamycin, offering a route towards breeding for sustained yield and lower N inputs.


Assuntos
Nitrogênio , Triticum , Carbono/metabolismo , Fertilizantes , Nitrogênio/metabolismo , Melhoramento Vegetal
5.
Sci Rep ; 12(1): 3352, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233071

RESUMO

Oilseed rape (Brassica napus) is an important crop that is cultivated for the oil (mainly triacylglycerol; TAG) it produces in its seeds. TAG synthesis is controlled mainly by key enzymes in the Kennedy pathway, such as glycerol 3-phosphate acyltransferase (GPAT), lysophosphatidate acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) but can also be produced from phosphoglycerides such as phosphatidylcholine (PC) by the activity of the enzyme phospholipid: diacylglycerol acyltransferase (PDAT). To evaluate the potential for these enzymes to alter oil yields or composition, we analysed transgenic B. napus lines which overexpressed GPAT, LPAT or PDAT using heterologous transgenes from Arabidopsis and Nasturtium and examined lipid profiles and changes in gene expression in these lines compared to WT. Distinct changes in PC and TAG abundance and spatial distribution in embryonic tissues were observed in some of the transgenic lines, together with altered expression of genes involved generally in acyl-lipid metabolism. Overall our results show that up-regulation of these key enzymes differentially affects lipid composition and distribution as well as lipid-associated gene expression, providing important information which could be used to improve crop properties by metabolic engineering.


Assuntos
Arabidopsis , Brassica napus , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Expressão Gênica , Metabolismo dos Lipídeos/genética , Sementes/genética , Sementes/metabolismo , Triglicerídeos/metabolismo
6.
BMC Plant Biol ; 21(1): 524, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758742

RESUMO

BACKGROUND: Grain size is thought to be a major component of yield in many plant species. Here we set out to understand if knowledge from other cereals such as rice could translate to increased yield gains in wheat and lead to increased nitrogen use efficiency. Previous findings that the overexpression of OsBG1 in rice increased yields while increasing seed size suggest translating gains from rice to other cereals may help to increase yields. RESULTS: The orthologous genes of OsBG1 were identified in wheat. One homoeologous wheat gene was cloned and overexpressed in wheat to understand its role in controlling seed size. Potential alteration in the nutritional profile of the grains were also analyzed in wheat overexpressing TaBG1. It was found that increased TaBG1-A expression could indeed lead to larger seed size but was linked to a reduction in seed number per plant leading to no significant overall increase in yield. Other important components of yield such as biomass or tillering did not change significantly with increased TaBG1-A expression. The nutritional profile of the grain was altered, with a significant decrease in the Zn levels in the grain associated with increased seed size, but Fe and Mn concentrations were unchanged. Protein content of the wheat grain also fell under moderate N fertilization levels but not under deficient or adequate levels of N. CONCLUSIONS: TaBG1 does control seed size in wheat but increasing the seed size per se does not increase yield and may come at the cost of lower concentrations of essential elements as well as potentially lower protein content. Nevertheless, TaBG1 could be a useful target for further breeding efforts in combination with other genes for increased biomass.


Assuntos
Genes de Plantas , Sementes/genética , Triticum/genética , Biomassa , Grão Comestível/química , Grão Comestível/genética , Grão Comestível/metabolismo , Nitrogênio/metabolismo , Valor Nutritivo/genética , Plantas Geneticamente Modificadas , Sementes/anatomia & histologia , Sementes/química , Sementes/metabolismo , Triticum/anatomia & histologia , Triticum/química , Triticum/metabolismo
7.
Theor Appl Genet ; 134(6): 1645-1662, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33900415

RESUMO

In the coming decades, larger genetic gains in yield will be necessary to meet projected demand, and this must be achieved despite the destabilizing impacts of climate change on crop production. The root systems of crops capture the water and nutrients needed to support crop growth, and improved root systems tailored to the challenges of specific agricultural environments could improve climate resiliency. Each component of root initiation, growth and development is controlled genetically and responds to the environment, which translates to a complex quantitative system to navigate for the breeder, but also a world of opportunity given the right tools. In this review, we argue that it is important to know more about the 'hidden half' of crop plants and hypothesize that crop improvement could be further enhanced using approaches that directly target selection for root system architecture. To explore these issues, we focus predominantly on bread wheat (Triticum aestivum L.), a staple crop that plays a major role in underpinning global food security. We review the tools available for root phenotyping under controlled and field conditions and the use of these platforms alongside modern genetics and genomics resources to dissect the genetic architecture controlling the wheat root system. To contextualize these advances for applied wheat breeding, we explore questions surrounding which root system architectures should be selected for, which agricultural environments and genetic trait configurations of breeding populations are these best suited to, and how might direct selection for these root ideotypes be implemented in practice.


Assuntos
Mudança Climática , Melhoramento Vegetal , Raízes de Plantas/fisiologia , Triticum/genética , Produtos Agrícolas/genética , Genes de Plantas , Fenótipo , Raízes de Plantas/genética , Triticum/fisiologia
8.
New Phytol ; 230(2): 629-640, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33124693

RESUMO

Wheat is the most widely grown crop globally, providing 20% of all human calories and protein. Achieving step changes in genetic yield potential is crucial to ensure food security, but efforts are thwarted by an apparent trade-off between grain size and number. Expansins are proteins that play important roles in plant growth by enhancing stress relaxation in the cell wall, which constrains cell expansion. Here, we describe how targeted overexpression of an α-expansin in early developing wheat seeds leads to a significant increase in grain size without a negative effect on grain number, resulting in a yield boost under field conditions. The best-performing transgenic line yielded 12.3% higher average grain weight than the control, and this translated to an increase in grain yield of 11.3% in field experiments using an agronomically appropriate plant density. This targeted transgenic approach provides an opportunity to overcome a common bottleneck to yield improvement across many crops.


Assuntos
Expressão Ectópica do Gene , Triticum , Produtos Agrícolas/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Triticum/genética , Triticum/metabolismo
9.
Front Plant Sci ; 11: 583374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324433

RESUMO

The application of CRISPR/Cas9 technologies has transformed our ability to target and edit designated regions of a genome. It's broad adaptability to any organism has led to countless advancements in our understanding of many biological processes. Many current tools are designed for simple plant systems such as diploid species, however, efficient deployment in crop species requires a greater efficiency of editing as these often contain polyploid genomes. Here, we examined the role of temperature to understand if CRISPR/Cas9 editing efficiency can be improved in wheat. The recent finding that plant growth under higher temperatures could increase mutation rates was tested with Cas9 expressed from two different promoters in wheat. Increasing the temperature of the tissue culture or of the seed germination and early growth phase increases the frequency of mutation in wheat when the Cas9 enzyme is driven by the ZmUbi promoter but not OsActin. In contrast, Cas9 expression driven by the OsActin promoter did not increase the mutations detected in either transformed lines or during the transformation process itself. These results demonstrate that CRISPR/Cas9 editing efficiency can be significantly increased in a polyploid cereal species with a simple change in growth conditions to facilitate increased mutations for the creation of homozygous or null knock-outs.

10.
Proc Natl Acad Sci U S A ; 117(46): 28708-28718, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127757

RESUMO

Stem solidness is an important agronomic trait of durum (Triticum turgidum L. var. durum) and bread (Triticum aestivum L.) wheat that provides resistance to the wheat stem sawfly. This dominant trait is conferred by the SSt1 locus on chromosome 3B. However, the molecular identity and mechanisms underpinning stem solidness have not been identified. Here, we demonstrate that copy number variation of TdDof, a gene encoding a putative DNA binding with one finger protein, controls the stem solidness trait in wheat. Using map-based cloning, we localized TdDof to within a physical interval of 2.1 Mb inside the SSt1 locus. Molecular analysis revealed that hollow-stemmed wheat cultivars such as Kronos carry a single copy of TdDof, whereas solid-stemmed cultivars such as CDC Fortitude carry multiple identical copies of the gene. Deletion of all TdDof copies from CDC Fortitude resulted in the loss of stem solidness, whereas the transgenic overexpression of TdDof restored stem solidness in the TdDof deletion mutant pithless1 and conferred stem solidness in Kronos. In solid-stemmed cultivars, increased TdDof expression was correlated with the down-regulation of genes whose orthologs have been implicated in programmed cell death (PCD) in other species. Anatomical and histochemical analyses revealed that hollow-stemmed lines had stronger PCD-associated signals in the pith cells compared to solid-stemmed lines, which suggests copy number-dependent expression of TdDof could be directly or indirectly involved in the negative regulation of PCD. These findings provide opportunities to manipulate stem development in wheat and other monocots for agricultural or industrial purposes.


Assuntos
Variações do Número de Cópias de DNA , Caules de Planta/anatomia & histologia , Fatores de Transcrição/genética , Triticum/genética , Genes de Plantas , Proteínas de Plantas/genética , Triticum/anatomia & histologia
11.
Front Nutr ; 7: 51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391373

RESUMO

Ingestion of gluten proteins (gliadins and glutenins) from wheat, barley and rye can cause coeliac disease (CD) in genetically predisposed individuals. The only remedy is a strict and lifelong gluten-free diet. There is a growing desire for coeliac-safe, whole-grain wheat-based products, as consumption of whole-grain foods reduces the risk of chronic diseases. However, due to the large number of gluten genes and the complexity of the wheat genome, wheat that is coeliac-safe but retains baking quality cannot be produced by conventional breeding alone. CD is triggered by immunogenic epitopes, notably those present in α-, γ-, and ω-gliadins. RNA interference (RNAi) silencing has been used to down-regulate gliadin families. Recently, targeted gene editing using CRISPR/Cas9 has been applied to gliadins. These methods produce offspring with silenced, deleted, and/or edited gliadins, that overall may reduce the exposure of patients to CD epitopes. Here we review methods to efficiently screen and select the lines from gliadin gene editing programs for CD epitopes at the DNA and protein level, for baking quality, and ultimately in clinical trials. The application of gene editing for the production of coeliac-safe wheat is further considered within the context of food production and in view of current national and international regulatory frameworks.

12.
Nat Commun ; 11(1): 2114, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355217

RESUMO

Most plants associate with beneficial arbuscular mycorrhizal (AM) fungi that facilitate soil nutrient acquisition. Prior to contact, partner recognition triggers reciprocal genetic remodelling to enable colonisation. The plant Dwarf14-Like (D14L) receptor conditions pre-symbiotic perception of AM fungi, and also detects the smoke constituent karrikin. D14L-dependent signalling mechanisms, underpinning AM symbiosis are unknown. Here, we present the identification of a negative regulator from rice, which operates downstream of the D14L receptor, corresponding to the homologue of the Arabidopsis thaliana Suppressor of MAX2-1 (AtSMAX1) that functions in karrikin signalling. We demonstrate that rice SMAX1 is a suppressor of AM symbiosis, negatively regulating fungal colonisation and transcription of crucial signalling components and conserved symbiosis genes. Similarly, rice SMAX1 negatively controls strigolactone biosynthesis, demonstrating an unexpected crosstalk between the strigolactone and karrikin signalling pathways. We conclude that removal of SMAX1, resulting from D14L signalling activation, de-represses essential symbiotic programmes and increases strigolactone hormone production.


Assuntos
Proteínas de Arabidopsis/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Micorrizas/fisiologia , Oryza/microbiologia , Proteínas de Plantas/fisiologia , Simbiose , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Furanos/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Compostos Heterocíclicos com 3 Anéis/metabolismo , Homozigoto , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lactonas/metabolismo , Família Multigênica , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Piranos/metabolismo , RNA-Seq , Transdução de Sinais
13.
Plant Direct ; 4(3): e00201, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32181421

RESUMO

Wheat is grown on more land than any other crop in the world. Current estimates suggest that yields will have to increase sixty percent by 2050 to meet the demand of an ever-increasing human population; however, recent wheat yield gains have lagged behind other major crops such as rice and maize. One of the reasons suggested for the lag in yield potential is the lack of a robust hybrid system to harness the potential yield gains associated with heterosis, also known as hybrid vigor. Here, we set out to identify candidate genes for a genic hybrid system in wheat and characterize their function in wheat using RNASeq on stamens and carpels undergoing meiosis. Twelve genes were identified as potentially playing a role in pollen viability. CalS5- and RPG1-like genes were identified as pre- and post-meiotic genes for further characterization and to determine their role in pollen viability. It appears that all three homoeologues of both CalS5 and RPG1 are functional in wheat as all three homoeologues need to be knocked out in order to cause male sterility. However, one functional homoeologue is sufficient to maintain male fertility in wheat.

14.
New Phytol ; 224(2): 700-711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400160

RESUMO

Lysophosphatidate acyltransferase (LPAAT) catalyses the second step of the Kennedy pathway for triacylglycerol (TAG) synthesis. In this study we expressed Trapaeolum majus LPAAT in Brassica napus (B. napus) cv 12075 to evaluate the effects on lipid synthesis and estimate the flux control coefficient for LPAAT. We estimated the flux control coefficient of LPAAT in a whole plant context by deriving a relationship between it and overall lipid accumulation, given that this process is a exponential. Increasing LPAAT activity resulted in greater TAG accumulation in seeds of between 25% and 29%; altered fatty acid distributions in seed lipids (particularly those of the Kennedy pathway); and a redistribution of label from 14 C-glycerol between phosphoglycerides. Greater LPAAT activity in seeds led to an increase in TAG content despite its low intrinsic flux control coefficient on account of the exponential nature of lipid accumulation that amplifies the effect of the small flux increment achieved by increasing its activity. We have also developed a novel application of metabolic control analysis likely to have broad application as it determines the in planta flux control that a single component has upon accumulation of storage products.


Assuntos
Aciltransferases/metabolismo , Brassica napus/enzimologia , Sementes/química , Triglicerídeos/metabolismo , Aciltransferases/genética , Brassica napus/metabolismo , DNA de Plantas , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas , Triglicerídeos/química , Tropaeolum/enzimologia , Tropaeolum/genética
15.
BMC Plant Biol ; 19(1): 333, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370789

RESUMO

BACKGROUND: Wheat grains contain gluten proteins, which harbour immunogenic epitopes that trigger Coeliac disease in 1-2% of the human population. Wheat varieties or accessions containing only safe gluten have not been identified and conventional breeding alone struggles to achieve such a goal, as the epitopes occur in gluten proteins encoded by five multigene families, these genes are partly located in tandem arrays, and bread wheat is allohexaploid. Gluten immunogenicity can be reduced by modification or deletion of epitopes. Mutagenesis technologies, including CRISPR/Cas9, provide a route to obtain bread wheat containing gluten proteins with fewer immunogenic epitopes. RESULTS: In this study, we analysed the genetic diversity of over 600 α- and γ-gliadin gene sequences to design six sgRNA sequences on relatively conserved domains that we identified near coeliac disease epitopes. They were combined in four CRISPR/Cas9 constructs to target the α- or γ-gliadins, or both simultaneously, in the hexaploid bread wheat cultivar Fielder. We compared the results with those obtained with random mutagenesis in cultivar Paragon by γ-irradiation. For this, Acid-PAGE was used to identify T1 grains with altered gliadin protein profiles compared to the wild-type endosperm. We first optimised the interpretation of Acid-PAGE gels using Chinese Spring deletion lines. We then analysed the changes generated in 360 Paragon γ-irradiated lines and in 117 Fielder CRISPR/Cas9 lines. Similar gliadin profile alterations, with missing protein bands, could be observed in grains produced by both methods. CONCLUSIONS: The results demonstrate the feasibility and efficacy of using CRISPR/Cas9 to simultaneously edit multiple genes in the large α- and γ-gliadin gene families in polyploid bread wheat. Additional methods, generating genomics and proteomics data, will be necessary to determine the exact nature of the mutations generated with both methods.


Assuntos
Edição de Genes/métodos , Genes de Plantas/genética , Gliadina/genética , Glutens/genética , Triticum/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Eletroforese em Gel de Poliacrilamida , Glutens/imunologia , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas , Alinhamento de Sequência
16.
J Exp Bot ; 70(18): 4737-4748, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172183

RESUMO

Wheat is a staple crop, frequently cultivated in water-restricted environments. Improving crop water-use efficiency would be desirable if grain yield can be maintained. We investigated whether a decrease in wheat stomatal density via the manipulation of epidermal patterning factor (EPF) gene expression could improve water-use efficiency. Our results show that severe reductions in stomatal density in EPF-overexpressing wheat plants have a detrimental outcome on yields. However, wheat plants with a more moderate reduction in stomatal density (i.e. <50% reduction in stomatal density on leaves prior to tillering) had yields indistinguishable from controls, coupled with an increase in intrinsic water-use efficiency. Yields of these moderately reduced stomatal density plants were also comparable with those of control plants under conditions of drought and elevated CO2. Our data demonstrate that EPF-mediated control of wheat stomatal development follows that observed in other grasses, and we identify the potential of stomatal density as a tool for breeding wheat plants that are better able to withstand water-restricted environments without yield loss.


Assuntos
Secas , Estômatos de Plantas/metabolismo , Triticum/metabolismo , Água/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Triticum/genética , Triticum/crescimento & desenvolvimento
17.
Plant Biotechnol J ; 17(10): 1892-1904, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30821405

RESUMO

Taxonomically-restricted orphan genes play an important role in environmental adaptation, as recently demonstrated by the fact that the Pooideae-specific orphan TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhanced wheat resistance to the economically devastating Fusarium head blight (FHB) disease. Like most orphan genes, little is known about the cellular function of the encoded protein TaFROG, other than it interacts with the central stress regulator TaSnRK1α. Here, we functionally characterized a wheat (T. aestivum) NAC-like transcription factor TaNACL-D1 that interacts with TaFROG and investigated its' role in FHB using studies to assess motif analyses, yeast transactivation, protein-protein interaction, gene expression and the disease response of wheat lines overexpressing TaNACL-D1. TaNACL-D1 is a Poaceae-divergent NAC transcription factor that encodes a Triticeae-specific protein C-terminal region with transcriptional activity and a nuclear localisation signal. The TaNACL-D1/TaFROG interaction was detected in yeast and confirmed in planta, within the nucleus. Analysis of multi-protein interactions indicated that TaFROG could form simultaneously distinct protein complexes with TaNACL-D1 and TaSnRK1α in planta. TaNACL-D1 and TaFROG are co-expressed as an early response to both the causal fungal agent of FHB, Fusarium graminearum and its virulence factor deoxynivalenol (DON). Wheat lines overexpressing TaNACL-D1 were more resistant to FHB disease than wild type plants. Thus, we conclude that the orphan protein TaFROG interacts with TaNACL-D1, a NAC transcription factor that forms part of the disease response evolved within the Triticeae.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Doenças das Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Genes de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas , Triticum/microbiologia
18.
PLoS Pathog ; 15(3): e1007620, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856238

RESUMO

The biotrophic fungal pathogen Blumeria graminis causes the powdery mildew disease of cereals and grasses. We present the first crystal structure of a B. graminis effector of pathogenicity (CSEP0064/BEC1054), demonstrating it has a ribonuclease (RNase)-like fold. This effector is part of a group of RNase-like proteins (termed RALPHs) which comprise the largest set of secreted effector candidates within the B. graminis genomes. Their exceptional abundance suggests they play crucial functions during pathogenesis. We show that transgenic expression of RALPH CSEP0064/BEC1054 increases susceptibility to infection in both monocotyledonous and dicotyledonous plants. CSEP0064/BEC1054 interacts in planta with the pathogenesis-related protein PR10. The effector protein associates with total RNA and weakly with DNA. Methyl jasmonate (MeJA) levels modulate susceptibility to aniline-induced host RNA fragmentation. In planta expression of CSEP0064/BEC1054 reduces the formation of this RNA fragment. We propose CSEP0064/BEC1054 is a pseudoenzyme that binds to host ribosomes, thereby inhibiting the action of plant ribosome-inactivating proteins (RIPs) that would otherwise lead to host cell death, an unviable interaction and demise of the fungus.


Assuntos
Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal/imunologia , Plantas/imunologia , RNA de Plantas/metabolismo , RNA Ribossômico/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Conformação Proteica , RNA de Plantas/genética , RNA Ribossômico/genética , Homologia de Sequência
19.
Nat Commun ; 9(1): 4677, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410018

RESUMO

In terrestrial ecosystems most plant species live in mutualistic symbioses with nutrient-delivering arbuscular mycorrhizal (AM) fungi. Establishment of AM symbioses includes transient, intracellular formation of fungal feeding structures, the arbuscules. A plant-derived peri-arbuscular membrane (PAM) surrounds the arbuscules, mediating reciprocal nutrient exchange. Signaling at the PAM must be well coordinated to achieve this dynamic cellular intimacy. Here, we identify the PAM-specific Arbuscular Receptor-like Kinase 1 (ARK1) from maize and rice to condition sustained AM symbiosis. Mutation of rice ARK1 causes a significant reduction in vesicles, the fungal storage structures, and a concomitant reduction in overall root colonization by the AM fungus Rhizophagus irregularis. Arbuscules, although less frequent in the ark1 mutant, are morphologically normal. Co-cultivation with wild-type plants restores vesicle and spore formation, suggesting ARK1 function is required for the completion of the fungal life-cycle, thereby defining a functional stage, post arbuscule development.


Assuntos
Micorrizas/metabolismo , Oryza/enzimologia , Oryza/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Microdissecção e Captura a Laser , Proteínas de Membrana/metabolismo , Membranas , Mutação/genética , Micorrizas/ultraestrutura , Oryza/ultraestrutura , Regiões Promotoras Genéticas/genética , Proteoma/metabolismo , Simbiose , Transcriptoma/genética , Zea mays/metabolismo , Zea mays/microbiologia
20.
BMC Plant Biol ; 18(1): 215, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285624

RESUMO

BACKGROUND: The use of CRISPR/Cas9 systems could prove to be a valuable tool in crop research, providing the ability to fully knockout gene function in complex genomes or to precisely adjust gene function by knockout of individual alleles. RESULTS: We compare gene editing in hexaploid wheat (Triticum aestivum) with diploid barley (Hordeum vulgare), using a combination of single genome and tri-genome targeting. High efficiency gene editing, 11-17% for single genome targeted guides and 5% for tri-genome targeted guides, was achieved in wheat using stable Agrobacterium-mediated transformation. Gene editing in wheat was shown to be predominantly heterozygous, edits were inherited in a Mendelian fashion over multiple generations and no off-target effects were observed. Comparison of editing between the two species demonstrated that more stable, heritable edits were produced in wheat, whilst barley exhibited continued and somatic editing. CONCLUSION: Our work shows the potential to obtain stable edited transgene-free wheat lines in 36 weeks through only two generations and that targeted mutagenesis of individual homeologues within the wheat genome is achievable with a modest amount of effort, and without off-target mutations or the need for lengthy crossing strategies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Triticum/genética , Agrobacterium/genética , DNA Bacteriano , Genoma de Planta , Hordeum/genética , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...