Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 337: 371-377, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274382

RESUMO

Treatment options for patients with pancreatic cancer are limited and survival prospects have barely changed over the past 4 decades. Chemoradiation treatment (CRT) has been used as neoadjuvant therapy in patients with borderline resectable disease to reduce tumour burden and increase the proportion of patients eligible for surgery. Antimetabolite drugs such as gemcitabine and 5-fluorouracil are known to sensitise pancreatic tumours to radiation treatment. Likewise, photodynamic therapy (PDT) has also been shown to enhance the effect of radiation therapy. However, PDT is limited to treating superficial lesions due to the attenuation of light by tissue. The ability of the related technique, sonodynamic therapy (SDT), to enhance CRT was investigated in two murine models of pancreatic cancer (PSN-1 and BxPC-3) in this study. SDT uses low intensity ultrasound to activate an otherwise non-toxic sensitiser, generating toxic levels of reactive oxygen species (ROS) locally. It is applicable to greater target depths than PDT due to the ability of ultrasound to propagate further than light in tissue. Both CRT and the combination of CRT plus SDT delayed tumour growth in the two tumour models. In the PSN-1 model, but not the BxPC-3 model, the combination treatment caused an increase in survival relative to CRT alone (p = 0.038). The improvement in survival conferred by the addition of SDT in this model may be related to differences in tumour architecture between the two models. MRI and US images showed that PSN-1 tumours were less well perfused and vascularised than BxPC-3 tumours. This poor vascularisation may explain why PSN-1 tumours were more susceptible to the effects of vascular damage exerted by SDT treatment.


Assuntos
Neoplasias Pancreáticas , Fotoquimioterapia , Terapia por Ultrassom , Animais , Fluoruracila/uso terapêutico , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Espécies Reativas de Oxigênio
2.
Mol Ther Oncolytics ; 21: 47-61, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33869742

RESUMO

Vaccinia virus (VV) is a powerful tool for cancer treatment with the potential for tumor tropism, efficient cell-to-cell spread, rapid replication in cancer cells, and stimulation of anti-tumor immunity. It has a well-defined safety profile and is being assessed in late-stage clinical trials. However, VV clinical utility is limited by rapid bloodstream neutralization and poor penetration into tumors. These factors have often restricted its route of delivery to intratumoral or intrahepatic artery injection and may impede repeat dosing. Chemical stealthing improves the pharmacokinetics of non-enveloped viruses, but it has not yet been applied to enveloped viruses such as VV. In the present study, amphiphilic polymer was used to coat VV, leading to reduced binding of a neutralizing anti-VV antibody (81.8% of polymer-coated VV [PCVV] staining positive versus 97.1% of VV [p = 0.0038]). Attachment of anti-mucin-1 (aMUC1) targeting antibody, to give aMUC1-PCVV, enabled binding of the construct to MUC1. In high MUC1 expressing CAPAN-2 cells, infection with PCVV was reduced compared to VV, while infection was restored with aMUC1-PCVV. Pharmacokinetics of aMUC1-PCVV, PCVV, and VV were evaluated. After intravenous (i.v.) injection of 1 × 108 viral genomes (VG) or 5 × 108 VG, circulation time for PCVV and aMUC1-PCVV was increased, with ~5-fold higher circulating dose at 5 min versus VV.

3.
Tomography ; 7(1): 39-54, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33681462

RESUMO

Standardisation of animal handling procedures for a wide range of preclinical imaging scanners will improve imaging performance and reproducibility of scientific data. Whilst there has been significant effort in defining how well scanners should operate and how in vivo experimentation should be practised, there is little detail on how to achieve optimal scanner performance with best practices in animal welfare. Here, we describe a system-agnostic, adaptable and extensible animal support cradle system for cardio-respiratory-synchronised, and other, multi-modal imaging of small animals. The animal support cradle can be adapted on a per application basis and features integrated tubing for anaesthetic and tracer delivery, an electrically driven rectal temperature maintenance system and respiratory and cardiac monitoring. Through a combination of careful material and device selection, we have described an approach that allows animals to be transferred whilst under general anaesthesia between any of the tomographic scanners we currently or have previously operated. The set-up is minimally invasive, cheap and easy to implement and for multi-modal, multi-vendor imaging of small animals.


Assuntos
Anestésicos , Coração , Animais , Coração/diagnóstico por imagem , Imagem Multimodal , Reprodutibilidade dos Testes
4.
J Control Release ; 319: 222-233, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31891732

RESUMO

The purpose of this exploratory study was to investigate the combination of a radiopharmaceutical, nanoparticles and ultrasound (US) enhanced delivery to develop a clinically viable therapeutic strategy for tumours overexpressing the epidermal growth factor receptor (EGFR). Molecularly targeted radionuclides have great potential for cancer therapy but are sometimes associated with insufficient delivery resulting in sub-cytotoxic amounts of radioactivity being delivered to the tumour. Liposome formulations are currently used in the clinic to reduce the side effects and improve the pharmacokinetic profile of chemotherapeutic drugs. However, in contrast to non-radioactive agents, loading and release of radiotherapeutics from liposomes can be challenging in the clinical setting. US-activated cavitation agents such as microbubbles (MBs) have been used to release therapeutics from liposomes to enhance the distribution/delivery in a target area. In an effort to harness the benefits of these techniques, the development of a liposome loaded radiopharmaceutical construct for enhanced delivery via acoustic cavitation was studied. The liposomal formulation was loaded with peptide, human epidermal growth factor (HEGF), coupled to a chelator for subsequent radiolabelling with 111Indium ([111In]In3+), in a manner designed to be compatible with preparation in a radiopharmacy. Liposomes were efficiently radiolabelled (57%) within 1 h, with release of ~12% of the radiopeptide following a 20 s exposure to US-mediated cavitation in vitro. In clonogenic studies this level of release resulted in cytotoxicity specifically in cells over-expressing the epidermal growth factor receptor (EGFR), with over 99% reduction in colony survival compared to controls. The formulation extended the circulation time and changed the biodistribution compared to the non-liposomal radiopeptide in vivo, although interestingly the biodistribution did not resemble that of liposome constructs currently used in the clinic. Cavitation of MBs co-injected with liposomes into tumours expressing high levels of EGFR resulted in a 2-fold enhancement in tumour uptake within 20 min. However, owing to the poor vascularisation of the tumour model used the same level of uptake was achieved without US after 24 h. By combining acoustic-cavitation-sensitive liposomes with radiopharmaceuticals this research represents a new concept in achieving targeted delivery of radiopharmaceuticals.


Assuntos
Radioisótopos de Índio , Lipossomos , Fator de Crescimento Epidérmico , Humanos , Distribuição Tecidual
5.
Lab Anim ; 54(4): 353-364, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31526094

RESUMO

Commercial mouse chow is designed to provide a complete, nutrient-rich diet, and it can contain upwards of 100 mg/kg manganese, an essential mineral. Manganese acts as a relaxation time-shortening contrast agent for both T1 and T2, and where standard chow is hydrated in the gastrointestinal tract, bright signals are produced when using T1-weighted imaging (T1WI). As a result of peristalsis, gastrointestinal hyperintensities result in temporally unstable signals, leading to image ghosting and decreased resolution from that prescribed. To avoid the problem, various methods of gastrointestinal tract modulation, including the use of intestinal cleansing with laxatives and dietary modulation, have been reported. Here, dietary modulation has been extended to the use of a biologically innocuous, long-term change of diet. In this study, we report on the use of a commercially available manganese-free chow to improve the image quality of the gastrointestinal tract. This manganese-free chow, apart from the omitted manganese which is available in tap water, is a complete diet and readily available. We investigated the time-dependent, diet-related gastrointestinal intensities on short-TR T1WI magnetic resonance imaging; monitored body mass, food and water consumption and standard blood biochemistry analysis following diet change; and determined manganese concentration in blood plasma following a five-day change to manganese-free chow. We show that the manganese-free chow presents a refinement to other gastrointestinal tract modulation, as it avoids the need for invasive procedures for gut voiding and can be provided ad libitum so that animals can be maintained with no need for prescribed diet change before imaging.


Assuntos
Abdome/diagnóstico por imagem , Ração Animal/análise , Meios de Contraste/análise , Trato Gastrointestinal/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Manganês/análise , Animais , Feminino , Camundongos
6.
Theranostics ; 9(19): 5595-5609, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534505

RESUMO

Nanomedicines allow active targeting of cancer for diagnostic and therapeutic applications through incorporation of multiple functional components. Frequently, however, clinical translation is hindered by poor intratumoural delivery and distribution. The application of physical stimuli to promote tumour uptake is a viable route to overcome this limitation. In this study, ultrasound-mediated cavitation of microbubbles was investigated as a mean of enhancing the delivery of a liposome designed for chemo-radionuclide therapy targeted to EGFR overexpressing cancer. Method: Liposomes (111In-EGF-LP-Dox) were prepared by encapsulation of doxorubicin (Dox) and surface functionalisation with Indium-111 tagged epidermal growth factor. Human breast cancer cell lines with high and low EGFR expression (MDA-MB-468 and MCF7 respectively) were used to study selectivity of liposomal uptake, subcellular localisation of drug payload, cytotoxicity and DNA damage. Liposome extravasation following ultrasound-induced cavitation of microbubbles (SonoVue®) was studied using a tissue-mimicking phantom. In vivo stability, pharmacokinetic profile and biodistribution were evaluated following intravenous administration of 111In-labelled, EGF-functionalised liposomes to mice bearing subcutaneous MDA-MB-468 xenografts. Finally, the influence of ultrasound-mediated cavitation on the delivery of liposomes into tumours was studied. Results: Liposomes were loaded efficiently with Dox, surface decorated with 111In-EGF and showed selective uptake in MDA-MB-468 cells compared to MCF7. Following binding to EGFR, Dox was released into the intracellular space and 111In-EGF shuttled to the cell nucleus. DNA damage and cell kill were higher in MDA-MB-468 than MCF7 cells. Moreover, Dox and 111In were shown to have an additive cytotoxic effect in MDA-MB-468 cells. US-mediated cavitation increased the extravasation of liposomes in an in vitro gel phantom model. In vivo, the application of ultrasound with microbubbles increased tumour uptake by 66% (p<0.05) despite poor vascularisation of MDA-MB-468 xenografts (as shown by DCE-MRI). Conclusion:111In-EGF-LP-Dox designed for concurrent chemo-radionuclide therapy showed specificity for and cytotoxicity towards EGFR-overexpressing cancer cells. Delivery to tumours was enhanced by the use of ultrasound-mediated cavitation indicating that this approach has the potential to deliver cytotoxic levels of therapeutic radionuclide to solid tumours.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Radioisótopos de Índio/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Doxorrubicina/química , Doxorrubicina/farmacocinética , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Receptores ErbB/genética , Feminino , Humanos , Radioisótopos de Índio/química , Radioisótopos de Índio/farmacocinética , Lipossomos/química , Camundongos , Camundongos Nus , Distribuição Tecidual , Ultrassom
7.
Tomography ; 5(2): 274-281, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31245549

RESUMO

A magnetic resonance (MR)-, computed tomography (CT)-, single-photon emission computed tomography (SPECT)-, and positron emission tomography (PET)-compatible carbon-fiber sheet resistor for temperature maintenance in small animals where space limitations prevent the use of circulating fluids was developed. A 250 Ω carbon-fiber sheet resistor was mounted to the underside of an imaging cradle. Alternating current, operating at 99 kHz, and with a power of 1-2 W, was applied to the resistor providing a cradle base temperature of ∼37°C. Temperature control was implemented with a proportional-integral-derivative controller, and temperature maintenance was demonstrated in 4 mice positioned in both MR and PET/SPECT/CT scanners. MR and CT compatibility were also shown, and multimodal MR-CT-PET-SPECT imaging of the mouse abdomen was performed in vivo. Core temperature was maintained at 35.5°C ± 0.2°C. No line-shape, frequency, or image distortions attributable to the current flow through the heater were observed on MR. Upon CT imaging, no heater-related artifacts were observed when carbon-fiber was used. Multimodal imaging was performed and images could be easily coregistered, displayed, analyzed, and presented. Carbon fiber sheet resistors powered with high-frequency alternating current allow homeothermic maintenance that is compatible with multimodal imaging. The heater is small, and it is easy to produce and integrate into multimodal imaging cradles.


Assuntos
Temperatura Corporal/fisiologia , Fibra de Carbono , Calefação/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos CBA , Modelos Animais , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
8.
J Nucl Med ; 60(4): 504-510, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30389822

RESUMO

Poly(ADP-ribose) polymerase (PARP) inhibitors are increasingly being studied as cancer drugs, as single agents, or as a part of combination therapies. Imaging of PARP using a radiolabeled inhibitor has been proposed for patient selection, outcome prediction, dose optimization, genotoxic therapy evaluation, and target engagement imaging of novel PARP-targeting agents. Methods: Here, via the copper-mediated 18F-radiofluorination of aryl boronic esters, we accessed, for the first time (to our knowledge), the 18F-radiolabeled isotopolog of the Food and Drug Administration-approved PARP inhibitor olaparib. The use of the 18F-labeled equivalent of olaparib allows direct prediction of the distribution of olaparib, given its exact structural likeness to the native, nonradiolabeled drug. Results:18F-olaparib was taken up selectively in vitro in PARP-1-expressing cells. Irradiation increased PARP-1 expression and 18F-olaparib uptake in a radiation-dose-dependent fashion. PET imaging in mice showed specific uptake of 18F-olaparib in tumors expressing PARP-1 (3.2% ± 0.36% of the injected dose per gram of tissue in PSN-1 xenografts), correlating linearly with PARP-1 expression. Two hours after irradiation of the tumor (10 Gy), uptake of 18F-olaparib increased by 70% (P = 0.025). Conclusion: Taken together, we show that 18F-olaparib has great potential for noninvasive tumor imaging and monitoring of radiation damage.


Assuntos
Radioisótopos de Flúor , Regulação Enzimológica da Expressão Gênica , Ftalazinas , Piperazinas , Poli(ADP-Ribose) Polimerases/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Ácidos Borônicos/química , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Cobre/química , Camundongos , Camundongos Endogâmicos BALB C , Ftalazinas/química , Piperazinas/química , Radioquímica , Hipóxia Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...