Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 18(1): e202200310, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36128847

RESUMO

8-oxo Guanine DNA Glycosylase 1 is the initiating enzyme within base excision repair and removes oxidized guanines from damaged DNA. Since unrepaired 8-oxoG could lead to G : C→T : A transversion, base removal is of utmost importance for cells to ensure genomic integrity. For cells with elevated levels of reactive oxygen species this dependency is further increased. In the past we and others have validated OGG1 as a target for inhibitors to treat cancer and inflammation. Here, we present the optimization campaign that led to the broadly used tool compound TH5487. Based on results from a small molecule screening campaign, we performed hit to lead expansion and arrived at potent and selective substituted N-piperidinyl-benzimidazolones. Using X-ray crystallography data, we describe the surprising binding mode of the most potent member of the class, TH8535. Here, the N-Piperidinyl-linker adopts a chair instead of a boat conformation which was found for weaker analogues. We further demonstrate cellular target engagement and efficacy of TH8535 against a number of cancer cell lines.


Assuntos
DNA Glicosilases , Neoplasias , Humanos , DNA Glicosilases/química , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Guanina/química , Guanina/metabolismo , Reparo do DNA , Benzimidazóis/farmacologia , Dano ao DNA
2.
Front Pharmacol ; 13: 999180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324676

RESUMO

Background and aim: Allergic asthma is a complex inflammatory disease involving type 2 innate lymphoid cells, type 2 T helper cells, macrophages, and eosinophils. The disease is characterized by wheezing, dyspnea, coughing, chest tightness and variable airflow limitation for which there is no cure and is symptomatically treated with inhaled corticosteroids and ß2-agonists. Molecular mechanisms underlying its complex pathogenesis are not fully understood. However, 8-oxoguanine DNA glycosylase-1 (OGG1), a DNA repair protein may play a central role, as OGG1 deficiency decreases both innate and allergic inflammation. Methods: Using a murine ovalbumin (OVA) model of allergic airway inflammation we assessed the utility of an inhibitor of OGG1 (TH5487) in this disease context. Cytokines and chemokines, promoting immune cell recruitment were measured using a 23-multiplex assay and Western blotting. Additionally, immune cell recruitment to bronchi was measured using flow cytometry. Histological analyses and immunofluorescent staining were used to confirm immune cell influx and goblet cell hyperplasia of the airways. A PCR array was used to assess asthma-related genes in murine lung tissue following TH5487 treatment. Finally, airway hyperresponsiveness was determined using in vivo lung function measurement. Results: In this study, administration of TH5487 to mice with OVA-induced allergic airway inflammation significantly decreased goblet cell hyperplasia and mucus production. TH5487 treatment also decreased levels of activated NF-κB and expression of proinflammatory cytokines and chemokines resulting in significantly lower recruitment of eosinophils and other immune cells to the lungs. Gene expression profiling of asthma and allergy-related proteins after TH5487 treatment revealed differences in several important regulators, including down regulation of Tnfrsf4, Arg1, Ccl12 and Ccl11, and upregulation of the negative regulator of type 2 inflammation, Bcl6. Furthermore, the gene Clca1 was upregulated following TH5487 treatment, which should be explored further due to its ambiguous role in allergic asthma. In addition, the OVA-induced airway hyperresponsiveness was significantly reduced by TH5487 treatment. Conclusion: Taken together, the data presented in this study suggest OGG1 as a clinically relevant pharmacological target for the treatment of allergic inflammation.

3.
Science ; 376(6600): 1471-1476, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35737787

RESUMO

Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed ß,δ-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging.


Assuntos
Dano ao DNA , DNA Glicosilases , Reparo do DNA , Estresse Oxidativo , Biocatálise/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/química , DNA Glicosilases/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Ativação Enzimática , Glicina/química , Humanos , Ligantes , Estresse Oxidativo/genética , Fenilalanina/química , Especificidade por Substrato
4.
Cancer Res ; 81(22): 5733-5744, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34593524

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, exhibiting high levels of reactive oxygen species (ROS). ROS levels have been suggested to drive leukemogenesis and is thus a potential novel target for treating AML. MTH1 prevents incorporation of oxidized nucleotides into the DNA to maintain genome integrity and is upregulated in many cancers. Here we demonstrate that hematologic cancers are highly sensitive to MTH1 inhibitor TH1579 (karonudib). A functional precision medicine ex vivo screen in primary AML bone marrow samples demonstrated a broad response profile of TH1579, independent of the genomic alteration of AML, resembling the response profile of the standard-of-care treatments cytarabine and doxorubicin. Furthermore, TH1579 killed primary human AML blast cells (CD45+) as well as chemotherapy resistance leukemic stem cells (CD45+Lin-CD34+CD38-), which are often responsible for AML progression. TH1579 killed AML cells by causing mitotic arrest, elevating intracellular ROS levels, and enhancing oxidative DNA damage. TH1579 showed a significant therapeutic window, was well tolerated in animals, and could be combined with standard-of-care treatments to further improve efficacy. TH1579 significantly improved survival in two different AML disease models in vivo. In conclusion, the preclinical data presented here support that TH1579 is a promising novel anticancer agent for AML, providing a rationale to investigate the clinical usefulness of TH1579 in AML in an ongoing clinical phase I trial. SIGNIFICANCE: The MTH1 inhibitor TH1579 is a potential novel AML treatment, targeting both blasts and the pivotal leukemic stem cells while sparing normal bone marrow cells.


Assuntos
Crise Blástica/tratamento farmacológico , Enzimas Reparadoras do DNA/antagonistas & inibidores , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mitose , Células-Tronco Neoplásicas/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Crise Blástica/genética , Crise Blástica/metabolismo , Crise Blástica/patologia , Proliferação de Células , Citarabina/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Biol Chem ; 296: 100568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33753169

RESUMO

The enzyme NUDT15 efficiently hydrolyzes the active metabolites of thiopurine drugs, which are routinely used for treating cancer and inflammatory diseases. Loss-of-function variants in NUDT15 are strongly associated with thiopurine intolerance, such as leukopenia, and preemptive NUDT15 genotyping has been clinically implemented to personalize thiopurine dosing. However, understanding the molecular consequences of these variants has been difficult, as no structural information was available for NUDT15 proteins encoded by clinically actionable pharmacogenetic variants because of their inherent instability. Recently, the small molecule NUDT15 inhibitor TH1760 has been shown to sensitize cells to thiopurines, through enhanced accumulation of 6-thio-guanine in DNA. Building upon this, we herein report the development of the potent and specific NUDT15 inhibitor, TH7755. TH7755 demonstrates a greatly improved cellular target engagement and 6-thioguanine potentiation compared with TH1760, while showing no cytotoxicity on its own. This potent inhibitor also stabilized NUDT15, enabling analysis by X-ray crystallography. We have determined high-resolution structures of the clinically relevant NUDT15 variants Arg139Cys, Arg139His, Val18Ile, and V18_V19insGlyVal. These structures provide clear insights into the structural basis for the thiopurine intolerance phenotype observed in patients carrying these pharmacogenetic variants. These findings will aid in predicting the effects of new NUDT15 sequence variations yet to be discovered in the clinic.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mutação , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/genética , Tioguanina/química , Tioguanina/farmacologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Pirofosfatases/química
6.
Sci Rep ; 11(1): 3490, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568707

RESUMO

The most common oxidative DNA lesion is 8-oxoguanine which is mainly recognized and excised by the 8-oxoG DNA glycosylase 1 (OGG1), initiating the base excision repair (BER) pathway. Telomeres are particularly sensitive to oxidative stress (OS) which disrupts telomere homeostasis triggering genome instability. In the present study, we have investigated the effects of inactivating BER in OS conditions, by using a specific inhibitor of OGG1 (TH5487). We have found that in OS conditions, TH5487 blocks BER initiation at telomeres causing an accumulation of oxidized bases, that is correlated with telomere losses, micronuclei formation and mild proliferation defects. Moreover, the antimetabolite methotrexate synergizes with TH5487 through induction of intracellular reactive oxygen species (ROS) formation, which potentiates TH5487-mediated telomere and genome instability. Our findings demonstrate that OGG1 is required to protect telomeres from OS and present OGG1 inhibitors as a tool to induce oxidative DNA damage at telomeres, with the potential for developing new combination therapies for cancer treatment.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , DNA Glicosilases/antagonistas & inibidores , Reparo do DNA/efeitos dos fármacos , Metotrexato/farmacologia , Estresse Oxidativo , Piperidinas/farmacologia , Telômero/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , DNA Glicosilases/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Instabilidade Genômica , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
7.
Viruses ; 12(12)2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322045

RESUMO

Recent RNA virus outbreaks such as Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus (EBOV) have caused worldwide health emergencies highlighting the urgent need for new antiviral strategies. Targeting host cell pathways supporting viral replication is an attractive approach for development of antiviral compounds, especially with new, unexplored viruses where knowledge of virus biology is limited. Here, we present a strategy to identify host-targeted small molecule inhibitors using an image-based phenotypic antiviral screening assay followed by extensive target identification efforts revealing altered cellular pathways upon antiviral compound treatment. The newly discovered antiviral compounds showed broad-range antiviral activity against pathogenic RNA viruses such as SARS-CoV-2, EBOV and Crimean-Congo hemorrhagic fever virus (CCHFV). Target identification of the antiviral compounds by thermal protein profiling revealed major effects on proteostasis pathways and disturbance in interactions between cellular HSP70 complex and viral proteins, illustrating the supportive role of HSP70 on many RNA viruses across virus families. Collectively, this strategy identifies new small molecule inhibitors with broad antiviral activity against pathogenic RNA viruses, but also uncovers novel virus biology urgently needed for design of new antiviral therapies.


Assuntos
Antivirais/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos dos fármacos , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Humanos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica , Proteoma/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/metabolismo
8.
Nucleic Acids Res ; 48(21): 12234-12251, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33211885

RESUMO

Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.


Assuntos
Neoplasias do Colo/tratamento farmacológico , DNA Glicosilases/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Poli(ADP-Ribose) Polimerase-1/imunologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Dano ao DNA , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Guanina/análogos & derivados , Guanina/metabolismo , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Chem Biol ; 16(10): 1120-1128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690945

RESUMO

The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.


Assuntos
Pirofosfatases/antagonistas & inibidores , Pirofosfatases/metabolismo , Sítios de Ligação , Linhagem Celular , Desenho de Fármacos , Desenvolvimento de Medicamentos , Escherichia coli , Humanos , Pirofosfatase Inorgânica/antagonistas & inibidores , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética , Relação Estrutura-Atividade
10.
Viruses ; 13(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383826

RESUMO

RNA viruses have gained plenty of attention during recent outbreaks of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus (ZIKV), and Ebola virus. ZIKV is a vector borne Flavivirus that is spread by mosquitoes and it mainly infects neuronal progenitor cells. One hallmark of congenital ZIKV disease is a reduced brain size in fetuses, leading to severe neurological defects. The World Health Organization (WHO) is urging the development of new antiviral treatments against ZIKV, as there are no efficient countermeasures against ZIKV disease. Previously, we presented a new class of host-targeting antivirals active against a number of pathogenic RNA viruses, such as SARS-CoV-2. Here, we show the transfer of the image-based phenotypic antiviral assay to ZIKV-infected brain cells, followed by mechanism-of-action studies and a proof-of-concept study in a three-dimensional (3D) organoid model. The novel antiviral compounds showed a therapeutic window against ZIKV in several cell models and rescued ZIKV-induced neurotoxicity in brain organoids. The compound's mechanism-of-action was pinpointed to late steps in the virus life cycle, impairing the formation of new virus particles. Collectively, in this study, we expand the antiviral activity of new small molecule inhibitors to a new virus class of Flaviviruses, but also uncover compounds' mechanism of action, which are important for the further development of antivirals.


Assuntos
Antivirais/farmacologia , Encéfalo/metabolismo , Organoides/metabolismo , Infecção por Zika virus/metabolismo , Zika virus/efeitos dos fármacos , Animais , Encéfalo/patologia , COVID-19 , Sobrevivência Celular/efeitos dos fármacos , Humanos , Organoides/patologia , Vírus de RNA , Ribavirina/farmacologia , SARS-CoV-2 , Zika virus/fisiologia , Infecção por Zika virus/virologia
12.
ACS Omega ; 4(7): 11642-11656, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460271

RESUMO

Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA.

13.
Science ; 362(6416): 834-839, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30442810

RESUMO

The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because Ogg1-deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor-α-induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor κB and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Benzimidazóis/farmacologia , DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Piperidinas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Benzimidazóis/uso terapêutico , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Guanina/análogos & derivados , Guanina/antagonistas & inibidores , Guanina/metabolismo , Células HEK293 , Humanos , Inflamação/genética , Células Jurkat , Camundongos , Camundongos Mutantes , NF-kappa B/genética , NF-kappa B/metabolismo , Piperidinas/uso terapêutico , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/farmacologia
14.
Nat Commun ; 9(1): 250, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343827

RESUMO

With a diverse network of substrates, NUDIX hydrolases have emerged as a key family of nucleotide-metabolizing enzymes. NUDT5 (also called NUDIX5) has been implicated in ADP-ribose and 8-oxo-guanine metabolism and was recently identified as a rheostat of hormone-dependent gene regulation and proliferation in breast cancer cells. Here, we further elucidate the physiological relevance of known NUDT5 substrates and underscore the biological requirement for NUDT5 in gene regulation and proliferation of breast cancer cells. We confirm the involvement of NUDT5 in ADP-ribose metabolism and dissociate a relationship to oxidized nucleotide sanitation. Furthermore, we identify potent NUDT5 inhibitors, which are optimized to promote maximal NUDT5 cellular target engagement by CETSA. Lead compound, TH5427, blocks progestin-dependent, PAR-derived nuclear ATP synthesis and subsequent chromatin remodeling, gene regulation and proliferation in breast cancer cells. We herein present TH5427 as a promising, targeted inhibitor that can be used to further study NUDT5 activity and ADP-ribose metabolism.


Assuntos
Inibidores Enzimáticos/farmacologia , Progestinas/metabolismo , Pirofosfatases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Adenosina Difosfato Ribose/metabolismo , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Feminino , Células HL-60 , Humanos , Estrutura Molecular , Pirofosfatases/genética , Pirofosfatases/metabolismo , Interferência de RNA , Especificidade por Substrato
16.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24695224

RESUMO

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Assuntos
Enzimas Reparadoras do DNA/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nucleotídeos/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Animais , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Dano ao DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirofosfatases/antagonistas & inibidores , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto , Nudix Hidrolases
17.
Org Lett ; 11(1): 165-8, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19067552

RESUMO

Lithiated epoxides react stereospecifically with boronic esters to give syn-1,2-diols, a process that can be used iteratively to create triols containing four stereogenic centers.


Assuntos
Álcoois/síntese química , Ácidos Borônicos/química , Compostos de Epóxi/química , Ésteres/química , Lítio/química , Compostos Organometálicos/química , Álcoois/química , Estrutura Molecular , Estereoisomerismo
18.
J Am Chem Soc ; 129(47): 14632-9, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17985887

RESUMO

The reactions of aryl-stabilized sulfur ylides with organoboranes has been studied under a variety of conditions. At 5 or -78 degrees C, the reaction with Et3B gave a mixture of the first and second homologation products, but at -100 degrees C, only the first homologation product was obtained even with just 1.1 equiv of Et3B. Under these optimized conditions, the chiral sulfur ylides (derived from camphor sulfonic acid) with different aryl groups were reacted with Et3B to give the corresponding alcohols (95-98% yield, 96-98% ee) and amines (74-77% yield, >98% ee). The origin of the high enantioselectivity is discussed. The use of nonsymmetrical 9-BBN derivatives was also explored. It was found that whereas primary alkyl substituents gave mixtures of products derived from competing migration of the boron substituent and the boracycle, all other groups resulted in either exclusive migration of the boron substituent (Ph, hexenyl, i-Pr) or exclusive migration of the boracycle (hexynyl, cyclopropyl). The factors responsible for the outcome of the reactions involving a hindered (i-Pr) and an unhindered (propynyl) substituent were studied by DFT calculations. This revealed that, in the case of an unhindered substituent, the conformation of the ate complex is the dominant factor whereas, in the case of a hindered substituent, the barriers to interconversion between the conformers of the ate complex and subsequent migration control the outcome of the reaction.

19.
J Org Chem ; 72(13): 4689-97, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17523662

RESUMO

New easily accessible 1,1'-bi-2-naphthol- (BINOL-) and biphenanthrol-based chiral pincer complex catalysts were prepared for selective (up to 85% enantiomeric excess) allylation of sulfonimines. The chiral pincer complexes were prepared by a flexible modular approach allowing an efficient tuning of the selectivity of the catalysts. By employment of the different enantiomeric forms of the catalysts, both enantiomers of the homoallylic amines could be selectively obtained. Both allyl stannanes and allyl trifluoroborates can be employed as allyl sources in the reactions. The biphenanthrol-based complexes gave higher selectivity than the substituted BINOL-based analogues, probably because of the well-shaped chiral pocket generated by employment of the biphenanthrol complexes. The enantioselective allylation of sulfonimines presented in this study has important implications for the mechanism given for the pincer complex-catalyzed allylation reactions, confirming that this process takes place without involvement of palladium(0) species.

20.
Chemistry ; 12(26): 6976-83, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16800008

RESUMO

Regio- and stereoselective palladium-pincer complex catalyzed allylation of sulfonylimines has been performed by using substituted trifluoro(allyl)borates and trimethylallylstannanes. The reactions provide the corresponding branched allylic products with excellent regioselectivity. The stereoselectivity of these processes is very high when trifluoro(cinnamyl)borate and trimethyl cinnamyl stannane are employed as allylic precursors; however, the reaction with trifluoro(crotyl)borate results in poor stereoselectivity. The major diastereomer formed in these reactions was the syn isomer, while the (previously reported) reactions with aldehyde electrophiles afforded the anti products, indicating that the mechanism of the stereoselection is dependent on the applied electrophile. Therefore, we have studied the mechanistic aspects of the allylation reactions by experimental studies and DFT modeling. The experimental mechanistic studies have clearly shown that potassium trifluoro(allyl)borate undergoes transmetallation with palladium-pincer complex 1 a affording an eta(1)-allylpalladium-pincer complex (1 e). The mechanism of the transfer of the allyl moiety from palladium to the sulfonylimine substrate was studied by DFT calculations at the B3PW91/LANL2DZ+P level of theory. These calculations have shown that the electrophilic substitution of sulfonylimines proceeds in a one-step process with a relatively low activation energy. The topology of the potential energy surface in the vicinity of the transition-state structure proved to be rather complicated as nine different geometries with similar energies were located as first order saddle points. Our studies have also shown that the high stereoselectivity with cinnamyl metal reagents stems from steric interactions in the TS structure of the allylation reaction. In addition, these studies have revealed that the mechanism of the stereoselection in the allylation of aldehydes and sulfonylimines is fundamentally different.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...