Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(51): 77007-77025, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35675010

RESUMO

Shipyard activities have contributed to the release of anthropogenic metals in sediment in the Amazon delta estuary, but no studies of the issue have been carried out in northern Brazil. This study evaluated the sediment that is under the influence of shipyard activities in the Guajará Bay and in the channel of the Maguari River, in Belém, Pará (PA) state, northern Brazil. Sediment samples were collected in the vicinity of the shipyards, while samples of paint and metal fragments were collected from hulls of abandoned vessels. Metals under analysis were Cu, Zn, Pb, Ni, Cr, Ba, V, Li, Fe and Al. Mean Cu concentrations found in the sediment in two shipyards - 28.3 mg kg-1 and 41.0 mg kg-1 - were above the threshold effect level (TEL) for the amphipod Hyalella azteca. The highest concentrations of metals found in paint fragments from abandoned vessels were 29,588 mg kg-1 Ba, 9,350 mg kg-1 Zn, 1,097 mg kg-1 Pb and 548 mg kg-1 Cr. This fact suggests that vessel abandonment is a major source of contamination in shipyard areas. The principal component analysis (PCA) showed that most metals under study are closely related to sediment contamination in the shipyards. Geoaccumulation index and screening concentrations of inorganic contaminants for metals in freshwater ecosystems confirmed that a shipyard was contaminated by copper. Results may support further studies of contamination and application of waste management to shipyards and vessel graveyards around the world.


Assuntos
Anfípodes , Metais Pesados , Poluentes Químicos da Água , Animais , Estuários , Sedimentos Geológicos/análise , Metais Pesados/análise , Monitoramento Ambiental/métodos , Cobre/análise , Ecossistema , Brasil , Chumbo/análise , Poluentes Químicos da Água/análise , Rios
2.
Sci Total Environ ; 775: 145184, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631560

RESUMO

Shipyards impact on estuarine environments because of the use of antifouling paints and petroleum products, which release trace metals that may remain in their bioavailable or labile form. Regardless of its importance, the relation between continuous input of trace metals (hotspot area) and their availability in the water column has been scarcely studied. This study evaluated seasonal variations in the concentrations of labile fractions of metals in shipyards located in estuarine areas on the Brazilian subtropical coast. These fractions were determined by the Diffuse Gradients in Thin Films (DGT) technique. Maximum labile fraction concentrations of Cr (0.3 µg L-1), Ni (2.2 µg L-1) and V (2.0 µg L-1) are directly related to (i) their specific source: antifouling paints (for Cr), metal and steel alloys (for Cr and Ni) and petroleum products (for V), besides (ii) periods of intensive traffic and vessel repair. Additionally, variations in labile fractions of Ni and V in the Patos Lagoon estuary were influenced by salinity, which is known to affect metal desorption from surface sediments in resuspension events. Even though Cr is affected by the same processes, it is available as Cr(III) and does not represent any ecological risk in the study areas. Although the areas under study are affected by variations in physical and chemical conditions, shipyards were effectively hotspots of trace metals in their labile fraction in various estuarine systems in southeastern and southern Brazil. Thus, they represent areas where Ecological Risk Assessment, mainly of V, should be carried out.

3.
J Hazard Mater ; 403: 123918, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264970

RESUMO

Estuarine systems are vulnerable to metals stress, such as copper (Cu). Thus, the development of applicable tools to improve routine monitoring programs is increasingly necessary. In the present work a comprehensive Ecological Risk Assessment (ERA) was implemented by coupling the Measured Environmental Concentration (MEC), based on labile Cu (DGT) and the total dissolved Cu concentration. Additionally, toxicity data related to site-specific Predicted No Effect Concentration (PNEC) were used. As case study, estuarine areas were selected on Brazilian coast, previously reported as Cu release in shipyard areas. The results indicated an increase in concentrations of dissolved and labile Cu during the application of antifouling paints. In locations where more vessels in maintenance were found, the concentration of Cu-DGT exceeded the PNEC value (0.16 µg.L-1) and represented an important part of the total dissolved fraction (>93 %). The MEC/PNEC quotients, showed that shipyard areas represent a high ecological risk. Thus, it is highlighted the need for site-specific environmental assessments to manage complex ecosystems and set in environmental legislation. Consequently, the novel coupling of DGT technique and the derivation of a site-specific PNEC represent an easily applicable tool as an alternative to classical ERAs.

4.
Sci Total Environ ; 710: 136216, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31923659

RESUMO

Speciation and partitioning of trace metals, from solid to solution phases of sediments, control their bioavailability and thus their potential ecological risk to organisms. Therefore, in order to obtain a broad evaluation of their risk, it is necessary to couple methodologies that are able to assess metal mobility in sediment. In this study, the Diffusive Gradients in Thin Films (DGT) technique and the application of 0.1 M HCl acid extraction methods, together with solid-state voltammetric sensors, were used with the objective of assessing mobility and potential availability of Cr, Cu, Ni, Pb, V and Zn in sediment porewaters and solid sediments in southeastern and southern Brazilian shipyard areas. The highest labile metal concentrations were found in shipyards with the longest histories of operations. Trace metal distributions in porewater and in the solid phase of sediments (labile metals) and significant correlations among metals enabled to distinguish the contribution of anti-fouling paint components. The diffusive flux of every metal measured at the surface of the sediment indicated that CuDGT had the highest flux (3.66E-03 mmol·m-2 d-1) in the shipyard with the longest operating time. Therefore, enrichment was observed for Cu, Pb and Zn in sediments, indicating a possible ecological risk level of 'Effects Range Median' to 'Apparent Effects Threshold' for oyster larvae (Mollusca) (Cu), bivalves (Pb) and the infaunal community (Zn). Probable Effect Concentrations (PEC) to sediment-dwelling biota can be expected as well, related to high concentrations of Cu and Zn in sediment. This study allowed a comprehensive evaluation of potential bioavailability and ecological risk of trace metals in aquatic systems where there is continuous and specific input of these elements. The use of the DGT technique with solid-state voltammetry in the sediment of distinct Brazilian estuarine systems demonstrated its potential to be applied in future environmental network programs.

5.
Environ Sci Pollut Res Int ; 25(2): 1719-1730, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29101697

RESUMO

Metallic elements found in the aquatic environment may originate in areas where petroleum is refined and vessels are maintained and repaired. This study aims to assess contamination caused by nickel (Ni), lead (Pb), and vanadium (V) in sediment of the Lagoa dos Patos estuary (RS, Brazil) and to evaluate them as indicators of areas under the influence of petroleum products and antifouling paints. Surface sediments were collected in summer and in winter in areas of marinas, shipyards, refinery, and a control station. High Pb and V concentrations in shipyards and at the Yacht Club showed that some organisms may be affected by toxicity. High Pb results of the index of geoaccumulation (Igeo) were found at the Yacht Club and shipyards. Al, Ni, and V had similar distribution in the sediment in both seasons. Ni and V had high relation in winter at the Yacht Club and at the Santos Shipyard, thus suggesting that these elements come mainly from petroleum products. The same happened to the relations between Pb and V, as well as Pb and Ni at the Santos Shipyard. These elements are employed as useful tools as indicators to identify places with moderate to high localized anthropogenic inputs of petroleum derivatives and antifouling paints.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Sedimentos Geológicos/análise , Navios , Organismos Aquáticos/efeitos dos fármacos , Brasil , Poluentes Ambientais/toxicidade , Estuários , Sedimentos Geológicos/química , Humanos , Chumbo/análise , Chumbo/toxicidade , Níquel/análise , Níquel/toxicidade , Pintura/análise , Poluição por Petróleo/análise , Estações do Ano , Vanádio/análise , Vanádio/toxicidade
6.
Environ Monit Assess ; 186(1): 559-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24189755

RESUMO

This long-term study, performed during the years 2003-2005 and 2008-2009, investigated the carbon (C), nitrogen (N), and phosphorus (P) contents of the phyto- and zooplankton communities and the nutrient regime of Cabo Frio Bay, SE Brazil. The information intends to serve as baseline of the plankton C, N, and P stoichiometry for the calibration of biogeochemical and ecological models in support to future findings related to the local and regional phenomena of climatic change. Cabo Frio Bay is a small semienclosed system set adjacent to a region subject to sporadic coastal upwelling. Zooplankton exhibited average annual C, N, and P contents of 11.6 ± 6.9 %, 2.8 ± 1.8 %, and 0.18 ± 0.08 %, and phytoplankton (>20 µm) 6.8 ± 6.0 %, 1.6 ± 1.5 %, and 0.09 ± 0.08 %, respectively. The C/N/P ratios correspond to the lowest already found to date for a marine environment. The low C contents must have been brought about by a predominance of gelatinous zooplankton, like Doliolids/ Salps and also Pteropods. Average annual nutrient concentrations in the water were 0.21 ± 0.1 µM for phosphate, 0.08 ± 0.1 µM for nitrite, 0.74 ± 1.6 µM for nitrate, and 1.27 ± 1.1 µM for ammonium. N/P ratios were around 8:1 during the first study period and 12:1 during the second. The plankton C/N/P and N/P nutrient ratios and elemental concentrations suggest that the system was oligotrophic and nitrogen limited. The sporadic intrusions of upwelling waters during the first study period had no marked effect upon the systems metabolism, likely due to dilution effects and the short residence times of water of the bay.


Assuntos
Carbono/análise , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Plâncton/fisiologia , Poluentes Químicos da Água/análise , Baías , Brasil , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Environ Monit Assess ; 185(8): 6767-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23475526

RESUMO

The dissolved labile and labile particulate fractions (LPF) of Cu and Zn were analyzed during different seasons and salinity conditions in estuarine waters of marina, port, and shipyard areas in the southern region of the Patos Lagoon (RS, Brazil). The dissolved labile concentration was determined using the diffusive gradients in thin films technique (DGT). DGT devices were deployed in seven locations of the estuary for 72 h and the physicochemical parameters were also measured. The LPF of Cu and Zn was determined by daily filtering of water samples. Seasonal variation of DGT-Cu concentrations was only significant (p < 0.05) at one shipyard area, while DGT-Zn was significant (p < 0.05) in every locations. The LPF of Cu and Zn concentrations demonstrated seasonal and spatial variability in all locations, mainly at shipyard areas during high salinity conditions. In general, except the control location, the sampling locations showed mean variations of 0.11-0.45 µg L(-1) for DGT-Cu, 0.89-9.96 µg L(-1) for DGT-Zn, 0.65-3.69 µg g(-1) for LPF-Cu, and 1.35-10.87 µg g(-1) for LPF-Zn. Shipyard areas demonstrated the most expressive values of labile Cu and Zn in both fractions. Strong relationship between DGT-Zn and LPF-Zn was found suggesting that the DGT-Zn fraction originates from the suspended particulate matter. Water salinity and suspended particulate matter content indicated their importance for the control of the labile concentrations of Cu and Zn in the water column. These parameters must be taken into consideration for comparison among labile metals in estuaries.


Assuntos
Cobre/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Zinco/análise , Brasil , Sedimentos Geológicos/química , Água do Mar/química , Navios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...