Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 233: 49-55, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27378621

RESUMO

UDP-glycosyltransferases (UGTs) are a promising class of biocatalysts that offer a sustainable alternative for chemical glycosylation of natural products. In this study, we aimed to characterize plant-derived UGTs from the GT-1 family with an emphasis on their acceptor promiscuity and their potential application in glycosylation processes. Recombinant expression in E. coli provided sufficient amounts of enzyme for the in-depth characterization of the salicylic acid UGT from Capsella rubella (UGT-SACr) and the stevia UGT from Stevia rebaudiana (UGT-76G1Sr). The latter was found to have a remarkably broad specificity with activities on a wide diversity of structures, from aliphatic and branched alcohols, over small phenolics to larger flavonoids, terpenoids and even higher glycoside compounds. As an example for its industrial potential, the glycosylation of curcumin was thoroughly evaluated. Under optimized conditions, 96% of curcumin was converted within 24h into the corresponding curcumin ß-glycosides. In addition, the reaction was performed in a coupled system with sucrose synthase from Glycine max, to enable the cost-efficient (re)generation of UDP-Glc from sucrose as abundant and renewable resource.


Assuntos
Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Stevia/enzimologia , Capsella/genética , Capsella/metabolismo , Curcumina/química , Curcumina/metabolismo , Estabilidade Enzimática , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Stevia/genética
2.
Int J Mol Sci ; 16(6): 13729-45, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26084050

RESUMO

Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-D-glucopyranosyl α-D-galactopyranoside) or galactotrehalose (α-D-galactopyranosyl α-D-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. "Greener" alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis.


Assuntos
Biocatálise , Trealose/análogos & derivados , Glucosiltransferases/química , Prebióticos , Trealose/química
3.
Appl Microbiol Biotechnol ; 99(20): 8465-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25846332

RESUMO

Sucrose synthase (SuSy) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into fructose and nucleotide (NDP)-glucose. To date, only SuSy's from plants and cyanobacteria, both photosynthetic organisms, have been characterized. Here, four prokaryotic SuSy enzymes from the nonphotosynthetic organisms Nitrosomonas Europaea (SuSyNe), Acidithiobacillus caldus (SuSyAc), Denitrovibrio acetiphilus (SusyDa), and Melioribacter roseus (SuSyMr) were recombinantly expressed in Escherichia coli and thoroughly characterized. The purified enzymes were found to display high-temperature optima (up to 80 °C), high activities (up to 125 U/mg), and high thermostability (up to 15 min at 60 °C). Furthermore, SuSyAc, SuSyNe, and SuSyDa showed a clear preference for ADP as nucleotide, as opposed to plant SuSy's which prefer UDP. A structural and mutational analysis was performed to elucidate the difference in NDP preference between eukaryotic and prokaryotic SuSy's. Finally, the physiological relevance of this enzyme specificity is discussed in the context of metabolic pathways and genomic organization.


Assuntos
Bactérias/enzimologia , Glucosiltransferases/genética , Glucosiltransferases/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bactérias/genética , Clonagem Molecular , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Estabilidade Enzimática , Expressão Gênica , Glucosiltransferases/química , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA , Especificidade por Substrato , Temperatura
4.
PLoS One ; 9(10): e108376, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290100

RESUMO

Resistance rates are increasing among several problematic Gram-negative pathogens, a fact that has encouraged the development of new antimicrobial agents. This paper characterizes a Salmonella phage endolysin (Lys68) and demonstrates its potential antimicrobial effectiveness when combined with organic acids towards Gram-negative pathogens. Biochemical characterization reveals that Lys68 is more active at pH 7.0, maintaining 76.7% of its activity when stored at 4°C for two months. Thermostability tests showed that Lys68 is only completely inactivated upon exposure to 100°C for 30 min, and circular dichroism analysis demonstrated the ability to refold into its original conformation upon thermal denaturation. It was shown that Lys68 is able to lyse a wide panel of Gram-negative bacteria (13 different species) in combination with the outer membrane permeabilizers EDTA, citric and malic acid. While the EDTA/Lys68 combination only inactivated Pseudomonas strains, the use of citric or malic acid broadened Lys68 antibacterial effect to other Gram-negative pathogens (lytic activity against 9 and 11 species, respectively). Particularly against Salmonella Typhimurium LT2, the combinatory effect of malic or citric acid with Lys68 led to approximately 3 to 5 log reductions in bacterial load/CFUs after 2 hours, respectively, and was also able to reduce stationary-phase cells and bacterial biofilms by approximately 1 log. The broad killing capacity of malic/citric acid-Lys68 is explained by the destabilization and major disruptions of the cell outer membrane integrity due to the acidity caused by the organic acids and a relatively high muralytic activity of Lys68 at low pH. Lys68 demonstrates good (thermo)stability properties that combined with different outer membrane permeabilizers, could become useful to combat Gram-negative pathogens in agricultural, food and medical industry.


Assuntos
Antibacterianos/farmacologia , Endopeptidases/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Fagos de Salmonella/metabolismo , Antibacterianos/química , Permeabilidade da Membrana Celular , Ácido Cítrico/farmacologia , Endopeptidases/química , Endopeptidases/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Malatos/farmacologia , Fagos de Salmonella/genética , Termodinâmica
5.
mBio ; 5(4): e01379-14, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24987094

RESUMO

The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Importance: Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins--enzymes derived from bacterial viruses--represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Endopeptidases/química , Acinetobacter baumannii/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
6.
Antimicrob Agents Chemother ; 58(7): 3774-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752267

RESUMO

Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼ 5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.


Assuntos
Antibacterianos/farmacologia , Catelicidinas/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Endopeptidases/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Peptidoglicano/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/química
7.
Appl Microbiol Biotechnol ; 97(10): 4369-75, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22832988

RESUMO

We here characterize five globular endolysins, encoded by a set of Gram-negative infecting bacteriophages: BcepC6gp22 (Burkholderia cepacia phage BcepC6B), P2gp09 (Escherichia coli phage P2), PsP3gp10 (Salmonella enterica phage PsP3), K11gp3.5 and KP32gp15 (Klebsiella pneumoniae phages K11 and KP32, respectively). In silico, BcepC6gp22, P2gp10 and PsP3gp10 are predicted to possess lytic transglycosylase activity, whereas K11gp3.5 and KP32gp15 have putative amidase activity. All five endolysins show muralytic activity on the peptidoglycan of several Gram-negative bacterial species. In vitro, Pseudomonas aeruginosa PAO1 is clearly sensitive for the antibacterial action of the five endolysins in the presence of the outer membrane permeabilizer EDTA: reductions are ranging from 1.89 to 3.08 log units dependent on the endolysin. The predicted transglycosylases BcepC6gp22, P2gp10 and PsP3gp10 have a substantially higher muralytic and in vitro antibacterial activity compared to the predicted amidases K11gp3.5 and KP32gp15, highlighting the impact of the catalytic specificity on endolysin activity. Furthermore, initial data exclude the synergistic lethal effect of a combination of the predicted transglycosylase PsP3gp10 and the predicted amidase K11gp3.5 on PAO1. As these globular endolysins show a lower enzymatic and antibacterial activity, in comparison to modular endolysins, we suggest that the latter should be favored for antibacterial applications.


Assuntos
Bacteriófagos/química , Endopeptidases/química , Bactérias Gram-Negativas/virologia , Antibacterianos/química , Fases de Leitura Aberta
8.
PLoS One ; 7(5): e36991, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615864

RESUMO

Peptidoglycan lytic enzymes (endolysins) induce bacterial host cell lysis in the late phase of the lytic bacteriophage replication cycle. Endolysins OBPgp279 (from Pseudomonas fluorescens phage OBP), PVP-SE1gp146 (Salmonella enterica serovar Enteritidis phage PVP-SE1) and 201φ2-1gp229 (Pseudomonas chlororaphis phage 201φ2-1) all possess a modular structure with an N-terminal cell wall binding domain and a C-terminal catalytic domain, a unique property for endolysins with a Gram-negative background. All three modular endolysins showed strong muralytic activity on the peptidoglycan of a broad range of Gram-negative bacteria, partly due to the presence of the cell wall binding domain. In the case of PVP-SE1gp146, this domain shows a binding affinity for Salmonella peptidoglycan that falls within the range of typical cell adhesion molecules (K(aff) = 1.26 × 10(6) M(-1)). Remarkably, PVP-SE1gp146 turns out to be thermoresistant up to temperatures of 90 °C, making it a potential candidate as antibacterial component in hurdle technology for food preservation. OBPgp279, on the other hand, is suggested to intrinsically destabilize the outer membrane of Pseudomonas species, thereby gaining access to their peptidoglycan and exerts an antibacterial activity of 1 logarithmic unit reduction. Addition of 0.5 mM EDTA significantly increases the antibacterial activity of the three modular endolysins up to 2-3 logarithmic units reduction. This research work offers perspectives towards elucidation of the structural differences explaining the unique biochemical and antibacterial properties of OBPgp279, PVP-SE1gp146 and 201φ2-1gp229. Furthermore, these endolysins extensively enlarge the pool of potential antibacterial compounds used against multi-drug resistant Gram-negative bacterial infections.


Assuntos
Bacteriófagos/metabolismo , Endopeptidases/metabolismo , Myoviridae/metabolismo , Sequência de Aminoácidos , Antibacterianos/metabolismo , Bacteriófagos/enzimologia , Domínio Catalítico , Moléculas de Adesão Celular/metabolismo , Parede Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Dados de Sequência Molecular , Myoviridae/enzimologia , Peptidoglicano/metabolismo , Ligação Proteica
9.
Curr Opin Biotechnol ; 22(2): 164-71, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21093250

RESUMO

Bacterial cell wall hydrolases (BCWHs) display a remarkable structural and functional diversity that offers perspectives for novel food applications, reaching beyond those of the archetype BCWH and established biopreservative hen egg white lysozyme. Insights in BCWHs from bacteriophages to animals have provided concepts for tailoring BCWHs to target specific pathogens or spoilage bacteria, or, conversely, to expand their working range to Gram-negative bacteria. Genetically modified foods expressing BCWHs in situ showed successful, but face regulatory and ethical concerns. An interesting spin-off development is the use of cell wall binding domains of bacteriophage BCWHs for detection and removal of foodborne pathogens. Besides for improving food safety or stability, BCWHs may also find use as functional food ingredients with specific health effects.


Assuntos
Bactérias/metabolismo , Parede Celular/metabolismo , Microbiologia de Alimentos/métodos , Hidrolases/metabolismo , Animais , Bactérias Gram-Negativas/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA