Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8: 14434, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186097

RESUMO

The response of marine plankton to climate change is of critical importance to the oceanic food web and fish stocks. We use a 60-year ocean basin-wide data set comprising >148,000 samples to reveal huge differences in range changes associated with climate change across 35 plankton taxa. While the range of dinoflagellates and copepods tended to closely track the velocity of climate change (the rate of isotherm movement), the range of the diatoms moved much more slowly. Differences in range shifts were up to 900 km in a recent warming period, with average velocities of range movement between 7 km per decade northwards for taxa exhibiting niche plasticity and 99 km per decade for taxa exhibiting niche conservatism. The differing responses of taxa to global warming will cause spatial restructuring of the plankton ecosystem with likely consequences for grazing pressures on phytoplankton and hence for biogeochemical cycling, higher trophic levels and biodiversity.


Assuntos
Mudança Climática , Ecossistema , Cadeia Alimentar , Plâncton/fisiologia , Animais , Copépodes/fisiologia , Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Peixes/fisiologia , Oceanos e Mares , Fitoplâncton/fisiologia , Plâncton/classificação , Dinâmica Populacional
2.
Environ Health ; 10: 54, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21645342

RESUMO

The relationship between toxic marine microalgae species and climate change has become a high profile and well discussed topic in recent years, with research focusing on the possible future impacts of changing hydrological conditions on Harmful Algal Bloom (HAB) species around the world. However, there is very little literature concerning the epidemiology of these species on marine organisms and human health. Here, we examine the current state of toxic microalgae species around the UK, in two ways: first we describe the key toxic syndromes and gather together the disparate reported data on their epidemiology from UK records and monitoring procedures. Secondly, using NHS hospital admissions and GP records from Wales, we attempt to quantify the incidence of shellfish poisoning from an independent source. We show that within the UK, outbreaks of shellfish poisoning are rare but occurring on a yearly basis in different regions and affecting a diverse range of molluscan shellfish and other marine organisms. We also show that the abundance of a species does not necessarily correlate to the rate of toxic events. Based on routine hospital records, the numbers of shellfish poisonings in the UK are very low, but the identification of the toxin involved, or even a confirmation of a poisoning event is extremely difficult to diagnose. An effective shellfish monitoring system, which shuts down aquaculture sites when toxins exceed regularity limits, has clearly prevented serious impact to human health, and remains the only viable means of monitoring the potential threat to human health. However, the closure of these sites has an adverse economic impact, and the monitoring system does not include all toxic plankton. The possible geographic spreading of toxic microalgae species is therefore a concern, as warmer waters in the Atlantic could suit several species with southern biogeographical affinities enabling them to occupy the coastal regions of the UK, but which are not yet monitored or considered to be detrimental.


Assuntos
Monitoramento Ambiental , Microalgas/fisiologia , Microalgas/patogenicidade , Intoxicação por Frutos do Mar/epidemiologia , Monitoramento Epidemiológico , Humanos , Incidência , Microalgas/classificação , Intoxicação por Frutos do Mar/classificação , Reino Unido/epidemiologia , País de Gales/epidemiologia
3.
J Microbiol Methods ; 73(2): 118-24, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18358549

RESUMO

The coccolithophores, particularly the species Emiliania huxleyi (Lohmann) Hay & Mohler, account for the bulk of global calcium carbonate production and as such play a fundamental role in global CO2 cycling and the carbonate chemistry of the oceans. To evaluate the response of this functional group to the effects of climate change, we undertook a feasibility study to determine whether a retrospective approach could be used on archived coccolithophore datasets. We demonstrate for the first time a technique for the extraction of E. huxleyi nucleic acids from archived formalin-fixed samples of the long-term Continuous Plankton Recorder. Molecular analysis of a nine year old formalin-fixed sample reveals the presence of a diverse population of E. huxleyi genotypes within a developing coccolithophore bloom. In addition, E. huxleyi sequences were amplified from a number of formalin-fixed samples, the earliest of which was collected in August 1972. This molecular assay promises the possibility of studying global variations in the distribution and genetic make-up of E. huxleyi communities over extensive periods of time.


Assuntos
Microbiologia Ambiental , Fitoplâncton/classificação , Fitoplâncton/genética , Sequência de Bases , DNA de Algas/química , DNA de Algas/genética , Fixadores/farmacologia , Formaldeído/farmacologia , Dados de Sequência Molecular , Fitoplâncton/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Adv Mar Biol ; 47: 1-105, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15596166

RESUMO

Long-term research in the western English Channel, undertaken by the marine laboratories in Plymouth, is described and details of survey methods, sites, and time series given in this chapter. Major findings are summarized and their limitations outlined. Current research, with recent reestablishment and expansion of many sampling programmes, is presented, and possible future approaches are indicated. These unique long-term data sets provide an environmental baseline for predicting complex ecological responses to local, regional, and global environmental change. Between 1888 and the present, investigations have been carried out into the physical, chemical, and biological components (ranging from plankton and fish to benthic and intertidal assemblages) of the western English Channel ecosystem. The Marine Biological Association of the United Kingdom has performed the main body of these observations. More recent contributions come from the Continuous Plankton Recorder Survey, now the Sir Alister Hardy Foundation for Ocean Science, dating from 1957; the Institute for Marine Environmental Research, from 1974 to 1987; and the Plymouth Marine Laboratory, which was formed by amalgamation of the Institute for Marine Environmental Research and part of the Marine Biological Association, from 1988. Together, these contributions constitute a unique data series-one of the longest and most comprehensive samplings of environmental and marine biological variables in the world. Since the termination of many of these time series in 1987-1988 during a reorganisation of UK marine research, there has been a resurgence of interest in long-term environmental change. Many programmes have been restarted and expanded with support from several agencies. The observations span significant periods of warming (1921-1961; 1985-present) and cooling (1962-1980). During these periods of change, the abundance of key species underwent dramatic shifts. The first period of warming saw changes in zooplankton, pelagic fish, and larval fish, including the collapse of an important herring fishery. During later periods of change, shifts in species abundances have been reflected in other assemblages, such as the intertidal zone and the benthic fauna. Many of these changes appear to be related to climate, manifested as temperature changes, acting directly or indirectly. The hypothesis that climate is a forcing factor is widely supported today and has been reinforced by recent studies that show responses of marine organisms to climatic attributes such as the strength of the North Atlantic Oscillation. The long-term data also yield important insights into the effects of anthropogenic disturbances such as fisheries exploitation and pollution. Comparison of demersal fish hauls over time highlights fisheries effects not only on commercially important species but also on the entire demersal community. The effects of acute ("Torrey Canyon" oil spill) and chronic (tributyltin [TBT] antifoulants) pollution are clearly seen in the intertidal records. Significant advances in diverse scientific disciplines have been generated from research undertaken alongside the long-term data series. Many concepts in marine biological textbooks have originated in part from this work (e.g. the seasonal cycle of plankton, the cycling of nutrients, the pelagic food web trophic interactions, and the influence of hydrography on pelagic communities). Associated projects currently range from studies of marine viruses and bacterial ecology to zooplankton feeding dynamics and validation of ocean colour satellite sensors. Recent advances in technology mean these long-term programmes are more valuable than ever before. New technology collects data on finer temporal and spatial scales and can be used to capture processes that operate on multiple scales and help determine their influence in the marine environment. The MBA has been in the forefront of environmental modelling of shelf seas since the early 1970s. Future directions being pursued include the continued development of coupled physical-ecosystem models using western English Channel time-series data. These models will include both the recent high-resolution data and the long-term time-series information to predict effects of future climate change scenarios. It would be beneficial to provide more spatial and high-resolution temporal context to these data, which are fundamental for capturing processes that operate at multiple scales and understanding how they operate within the marine environment. This is being achieved through employment of technologies such as satellite-derived information and advanced telemetry instruments that provide real-time in situ profile data from the water column.


Assuntos
Ecossistema , Peixes/crescimento & desenvolvimento , Biologia Marinha , Plâncton/crescimento & desenvolvimento , Animais , Clima , Oceanografia , Oceanos e Mares , Dinâmica Populacional , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...