Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Res Eur ; 3: 169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38405183

RESUMO

Opportunistic sensors are increasingly used for rainfall measurement. However, their raw data are collected by a variety of systems that are often not primarily intended for rainfall monitoring, resulting in a plethora of different data formats and a lack of common standards. This hinders the sharing of opportunistic sensing (OS) data, their automated processing, and, at the end, their practical usage and integration into standard observation systems. This paper summarises the experiences of the more than 100 members of the OpenSense Cost Action involved in the OS of rainfall. We review the current practice of collecting and storing precipitation OS data and corresponding metadata, and propose new common guidelines describing the requirements on data and metadata collection, harmonising naming conventions, and defining human-readable and machine readable file formats for data and metadata storage. We focus on three sensors identified by the OpenSense community as prominent representatives of the OS of precipitation: Commercial microwave links (CML): fixed point-to-point radio links mainly used as backhauling connections in telecommunication networks Satellite microwave links (SML): radio links between geostationary Earth orbit (GEO) satellites and ground user terminals. Personal weather stations (PWS): non-professional meteorological sensors owned by citizens. The conventions presented in this paper are primarily designed for storing, handling, and sharing historical time series and do not consider specific requirements for using OS data in real time for operational purposes. The conventions are already now accepted by the ever growing OpenSense community and represent an important step towards automated processing of OS raw data and community development of joint OS software packages.


Opportunistic sensors, devices primarily intended not intended for sensing, are increasingly used for rainfall measurement. The lack of conventions defining which data should be stored and how, makes it difficult to automatically process the data and integrate these observations into standard monitoring networks. This paper reviews current practice of collecting and storing precipitation opportunistic sensing (OS) data based on the experience of more than 100 members of the OpenSense Cost Action and suggest common data format standards. We focus on three sensors identified by the OpenSense community as prominent representatives of the OS of precipitation: Commercial microwave links (CML), Satellite Microwave Links (SML), and Personal Weather Stations (PWS). The conventions are already now accepted by the ever growing OpenSense community and represent an important step towards automated processing of OS raw data and community development of joint OS software packages.

2.
Plant Biotechnol J ; 2(4): 321-7, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17134393

RESUMO

The consumption of fructans as a low caloric food ingredient or dietary fibre is rapidly increasing due to health benefits. Presently, the most important fructan source is chicory, but these fructans have a simple linear structure and are prone to degradation. Additional sources of high-quality tailor-made fructans would provide novel opportunities for their use as food ingredients. Sugar beet is a highly productive crop that does not normally synthesize fructans. We have introduced specific onion fructosyltransferases into sugar beet. This resulted in an efficient conversion of sucrose into complex, onion-type fructans, without the loss of storage carbohydrate content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...