Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Langmuir ; 40(9): 4772-4778, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38381871

RESUMO

Self-assembled monolayers (SAMs) emerging as promising hole-selective layers (HSLs) are advantageous for facile processability, low cost, and minimal material consumption in the fabrication of both perovskite solar cells (PSCs) and organic solar cells (OSCs). However, owing to the different nature between perovskites and organic semiconductors, few SAMs were reported to effectively accommodate both PSCs and OSCs at the same time. In this regard, a universally applicable SAM that can accommodate both perovskites and organic semiconductors could be desirable for simplifying cell manufacturing, especially from an industrial perspective. In this work, we designed a SAM, TDPA-Cl by introducing chlorinated phenothiazine as the headgroup and linking with anchor phosphonic acid through a butyl chain. The resulting dense SAM was carefully characterized in terms of molecular bonding, surface morphology, and packing density, and its functions in OSCs and PSCs were discussed from the aspects of interactions with the absorber layer, energy level alignment, and charge-selective dipoles. The PM6:Y6-based OSCs with TDPA-Cl SAM as the HSL showed a superior performance to those with PEDOT:PSS. Furthermore, the universality was proved with an efficiency of 17.4% in the D18:Y6 system. In PSCs, the TDPA-Cl-based devices delivered a better performance of 22.4% than the PTAA-based devices (20.8%) with improved processability and reproducibility. This work represents a SAM with reasonably good compromise between the differing requirements of OSCs and PSCs.

3.
J Am Chem Soc ; 146(9): 5806-5810, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394698

RESUMO

Post-transition metal cations with a lone pair (ns2np0) electronic configuration such as Pb2+ and Bi3+ are important components of materials for solar-to-energy conversion. As in molecules like NH3, the lone pair is often stereochemically active in crystals, associated with distorted coordination environments of these cations. In the present study, we demonstrate that suppressed lone pair stereochemical activity can be used as a tool to enhance visible light absorption. Based on an orbital interaction model, we predict that a centrosymmetric environment of the cations limits the orbital interactions with anions, deactivates the lone pair, and narrows the band gap. A high-symmetry Bi3+ site is realized by isovalent substitutions with Y3+ by considering its similar ionic radius and absence of a lone pair. The quaternary photocatalyst Bi2YO4X is singled out as a candidate for Bi substitution from a survey of the coordination environments in Y-O compounds. The introduction of Bi3+ to the undistorted Y3+ site in Bi2YO4X results in a narrowed band gap, as predicted theoretically and confirmed experimentally. The orbital interaction controlled by site symmetry engineering offers a pathway for the further development of post-transition metal compounds for optoelectronic applications.

4.
Nat Mater ; 23(1): 16-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172540
5.
Digit Discov ; 3(1): 23-33, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239898

RESUMO

In light of the pressing need for practical materials and molecular solutions to renewable energy and health problems, to name just two examples, one wonders how to accelerate research and development in the chemical sciences, so as to address the time it takes to bring materials from initial discovery to commercialization. Artificial intelligence (AI)-based techniques, in particular, are having a transformative and accelerating impact on many if not most, technological domains. To shed light on these questions, the authors and participants gathered in person for the ASLLA Symposium on the theme of 'Accelerated Chemical Science with AI' at Gangneung, Republic of Korea. We present the findings, ideas, comments, and often contentious opinions expressed during four panel discussions related to the respective general topics: 'Data', 'New applications', 'Machine learning algorithms', and 'Education'. All discussions were recorded, transcribed into text using Open AI's Whisper, and summarized using LG AI Research's EXAONE LLM, followed by revision by all authors. For the broader benefit of current researchers, educators in higher education, and academic bodies such as associations, publishers, librarians, and companies, we provide chemistry-specific recommendations and summarize the resulting conclusions.

6.
Small ; 20(3): e2303565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37736694

RESUMO

Metal halide perovskites are multifunctional semiconductors with tunable structures and properties. They are highly dynamic crystals with complex octahedral tilting patterns and strongly anharmonic atomic behavior. In the higher temperature, higher symmetry phases of these materials, several complex structural features are observed. The local structure can differ greatly from the average structure and there is evidence that dynamic 2D structures of correlated octahedral motion form. An understanding of the underlying complex atomistic dynamics is, however, still lacking. In this work, the local structure of the inorganic perovskite CsPbI3 is investigated using a new machine learning force field based on the atomic cluster expansion framework. Through analysis of the temporal and spatial correlation observed during large-scale simulations, it is revealed that the low frequency motion of octahedral tilts implies a double-well effective potential landscape, even well into the cubic phase. Moreover, dynamic local regions of lower symmetry are present within both higher symmetry phases. These regions are planar and the length and timescales of the motion are reported. Finally, the spatial arrangement of these features and their interactions are investigated and visualized, providing a comprehensive picture of local structure in the higher symmetry phases.

7.
Chem Mater ; 35(22): 9725-9738, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38047186

RESUMO

Hybrid organic-inorganic lead halide perovskites are promising candidates for next-generation solar cells, light-emitting diodes, photodetectors, and lasers. The structural, dynamic, and phase-transition properties play a key role in the performance of these materials. In this work, we use a multitechnique experimental (thermal, X-ray diffraction, Raman scattering, dielectric, nonlinear optical) and theoretical (machine-learning force field) approach to map the phase diagrams and obtain information on molecular dynamics and mechanism of the structural phase transitions in novel 3D AZRPbX3 perovskites (AZR = aziridinium; X = Cl, Br, I). Our work reveals that all perovskites undergo order-disorder phase transitions at low temperatures, which significantly affect the structural, dielectric, phonon, and nonlinear optical properties of these compounds. The desirable cubic phases of AZRPbX3 remain stable at lower temperatures (132, 145, and 162 K for I, Br, and Cl) compared to the methylammonium and formamidinium analogues. Similar to other 3D-connected hybrid perovskites, the dielectric response reveals a rather high dielectric permittivity, an important feature for defect tolerance. We further show that AZRPbBr3 and AZRPbI3 exhibit strong nonlinear optical absorption. The high two-photon brightness of AZRPbI3 emission stands out among lead perovskites emitting in the near-infrared region.

8.
J Phys Chem Lett ; 14(51): 11618-11624, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38100379

RESUMO

The rational design of alloys and solid solutions relies on accurate computational predictions of phase diagrams. The cluster expansion method has proven to be a valuable tool for studying disordered crystals. However, the effects of vibrational entropy are commonly neglected due to the computational cost. Here, we devise a method for including the vibrational free energy in cluster expansions with a low computational cost by fitting a machine learning force field (MLFF) to the relaxation trajectories available from cluster expansion construction. We demonstrate our method for two (pseudo)binary systems, Na1-xKxCl and Ag1-xPdx, for which accurate phonon dispersions and vibrational free energies are derived from the MLFF. For both systems, the inclusion of vibrational effects results in significantly better agreement with miscibility gaps in experimental phase diagrams. This methodology can allow routine inclusion of vibrational effects in calculated phase diagrams and thus more accurate predictions of properties and stability for mixtures of materials.

9.
ACS Catal ; 13(22): 14513-14522, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026818

RESUMO

Li-mediated ammonia synthesis is, thus far, the only electrochemical method for heterogeneous decentralized ammonia production. The unique selectivity of the solid electrode provides an alternative to one of the largest heterogeneous thermal catalytic processes. However, it is burdened with intrinsic energy losses, operating at a Li plating potential. In this work, we survey the periodic table to understand the fundamental features that make Li stand out. Through density functional theory calculations and experimentation on chemistries analogous to lithium (e.g., Na, Mg, Ca), we find that lithium is unique in several ways. It combines a stable nitride that readily decomposes to ammonia with an ideal solid electrolyte interphase, balancing reagents at the reactive interface. We propose descriptors based on simulated formation and binding energies of key intermediates and further on hard and soft acids and bases (HSAB principle) to generalize such features. The survey will help the community toward electrochemical systems beyond Li for nitrogen fixation.

10.
J Phys Chem C Nanomater Interfaces ; 127(38): 19141-19151, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37791100

RESUMO

Metal halide perovskites have shown extraordinary performance in solar energy conversion technologies. They have been classified as "soft semiconductors" due to their flexible corner-sharing octahedral networks and polymorphous nature. Understanding the local and average structures continues to be challenging for both modeling and experiments. Here, we report the quantitative analysis of structural dynamics in time and space from molecular dynamics simulations of perovskite crystals. The compact descriptors provided cover a wide variety of structural properties, including octahedral tilting and distortion, local lattice parameters, molecular orientations, as well as their spatial correlation. To validate our methods, we have trained a machine learning force field (MLFF) for methylammonium lead bromide (CH3NH3PbBr3) using an on-the-fly training approach with Gaussian process regression. The known stable phases are reproduced, and we find an additional symmetry-breaking effect in the cubic and tetragonal phases close to the phase-transition temperature. To test the implementation for large trajectories, we also apply it to 69,120 atom simulations for CsPbI3 based on an MLFF developed using the atomic cluster expansion formalism. The structural dynamics descriptors and Python toolkit are general to perovskites and readily transferable to more complex compositions.

11.
Chem Sci ; 14(34): 9175-9185, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655035

RESUMO

Building on the extensive exploration of metal oxide and metal halide perovskites, metal nitride perovskites represent a largely unexplored class of materials. We report a multi-tier computational screening of this chemical space. From a pool of 3660 ABN3 compositions covering I-VIII, II-VII, III-VI and IV-V oxidation state combinations, 279 are predicted to be chemically feasible. The ground-state structures of the 25 most promising candidate compositions were explored through enumeration over octahedral tilt systems and global optimisation. We predict 12 dynamically and thermodynamically stable nitride perovskite materials, including YMoN3, YWN3, ZrTaN3, and LaMoN3. These feature significant electric polarisation and low predicted switching electric field, showing similarities with metal oxide perovskites and making them attractive for ferroelectric memory devices.

12.
Phys Chem Chem Phys ; 25(36): 25055, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671577

RESUMO

Correction for 'Lone pair driven anisotropy in antimony chalcogenide semiconductors' by Xinwei Wang et al., Phys. Chem. Chem. Phys., 2022, 24, 7195-7202, https://doi.org/10.1039/D1CP05373F.

13.
Chem Soc Rev ; 52(17): 5812-5826, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37565783

RESUMO

Defects determine many important properties and applications of materials, ranging from doping in semiconductors, to conductivity in mixed ionic-electronic conductors used in batteries, to active sites in catalysts. The theoretical description of defect formation in crystals has evolved substantially over the past century. Advances in supercomputing hardware, and the integration of new computational techniques such as machine learning, provide an opportunity to model longer length and time-scales than previously possible. In this Tutorial Review, we cover the description of free energies for defect formation at finite temperatures, including configurational (structural, electronic, spin) and vibrational terms. We discuss challenges in accounting for metastable defect configurations, progress such as machine learning force fields and thermodynamic integration to directly access entropic contributions, and bottlenecks in going beyond the dilute limit of defect formation. Such developments are necessary to support a new era of accurate defect predictions in computational materials chemistry.

14.
Chem Mater ; 35(14): 5532-5540, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521745

RESUMO

Multicomponent inorganic compounds containing post-transition-metal cations such as Sn, Pb, and Bi are a promising class of photocatalysts, but their structure-property relationships remain difficult to decipher. Here, we report three novel bismuth-based layered oxyiodides, the Sillén-Aurivillius phase Bi4NbO8I, Bi5BaTi3O14I, and Bi6NbWO14I. We show that the interlayer Bi-Bi interaction is a key to controlling the electronic structure. The replacement of the halide layer from Cl to I negatively shifts not only the valence band but also the conduction band, thus providing lower electron affinity without sacrificing photoabsorption. The suppressed interlayer chemical interaction between the 6p orbitals of the Bi lone-pair cations reduces the conduction bandwidth. These oxyiodides have narrower band gaps and show much higher water oxidation activities under visible light than their chloride counterparts. The design strategy has not only provided three novel Bi-based photocatalysts for water splitting but also offers a pathway to control the optoelectronic properties of a wider class of lone-pair (ns2np0) semiconductors.

15.
J Am Chem Soc ; 145(26): 14529-14538, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37341453

RESUMO

Electroconductive metal-organic frameworks (MOFs) have emerged as high-performance electrode materials for supercapacitors, but the fundamental understanding of the underlying chemical processes is limited. Here, the electrochemical interface of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with an organic electrolyte is investigated using a multiscale quantum-mechanics/molecular-mechanics (QM/MM) procedure and experimental electrochemical measurements. Our simulations reproduce the observed capacitance values and reveals the polarization phenomena of the nanoporous framework. We find that excess charges mainly form on the organic ligand, and cation-dominated charging mechanisms give rise to greater capacitance. The spatially confined electric double-layer structure is further manipulated by changing the ligand from HHTP to HITP (HITP = 2,3,6,7,10,11-hexaiminotriphenylene). This minimal change to the electrode framework not only increases the capacitance but also increases the self-diffusion coefficients of in-pore electrolytes. The performance of MOF-based supercapacitors can be systematically controlled by modifying the ligating group.

16.
Mater Horiz ; 10(8): 2883-2891, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37158579

RESUMO

The local structures of layered covalent-organic frameworks (COFs) deviate from the average crystal structures assigned from X-ray diffraction experiments. For two prototype COFs of Tp-Azo and DAAQ-TFP, density functional theory calculations have shown that the eclipsed structure is not an energy minimum and that the internal energy is lowered for an inclined stacking arrangement. Here we explore the structural disorder of these frameworks at 300 K through molecular dynamics (MD) simulations using an on-the-fly machine learning force field (MLFF). We find that an initially eclipsed stacking mode spontaneously distorts to form a zigzag configuration that lowers the free energy of the crystal. The simulated diffraction patterns show good agreement with experimental observations. The dynamic disorder from the MLFF MD trajectories is found to persist in mesoscale MD simulations of 155 thousand atoms, giving further confidence in our conclusions. Our simulations show that the stacking behaviour of layered COFs is more complicated than previously understood.

17.
Cryst Growth Des ; 23(5): 3314-3319, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37159659

RESUMO

Finite-temperature stability of crystals is of continuous relevance in solid-state chemistry with many important properties only emerging in high-temperature polymorphs. Currently, the discovery of new phases is largely serendipitous due to a lack of computational methods to predict crystal stability with temperature. Conventional methods use harmonic phonon theory, but this breaks down when imaginary phonon modes are present. Anharmonic phonon methods are required to describe dynamically stabilized phases. We investigate the high-temperature tetragonal-to-cubic phase transition of ZrO2 based on first-principles anharmonic lattice dynamics and molecular dynamics simulations as an archetypical example of a phase transition involving a soft phonon mode. Anharmonic lattice dynamics calculations and free energy analysis suggest that the stability of cubic zirconia cannot be attributed solely to anharmonic stabilization and is thus absent for the pristine crystal. Instead, an additional entropic stabilization is suggested to arise from spontaneous defect formation, which is also responsible for superionic conductivity at elevated temperatures.

18.
J Am Chem Soc ; 145(23): 12509-12517, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253175

RESUMO

Chalcohalide mixed-anion crystals have seen a rise in interest as "perovskite-inspired materials" with the goal of combining the ambient stability of metal chalcogenides with the exceptional optoelectronic performance of metal halides. Sn2SbS2I3 is a promising candidate, having achieved a photovoltaic power conversion efficiency above 4%. However, there is uncertainty over the crystal structure and physical properties of this crystal family. Using a first-principles cluster expansion approach, we predict a disordered room-temperature structure, comprising both static and dynamic cation disorder on different crystallographic sites. These predictions are confirmed using single-crystal X-ray diffraction. Disorder leads to a lowering of the bandgap from 1.8 eV at low temperature to 1.5 eV at the experimental annealing temperature of 573 K. Cation disorder tailoring the bandgap allows for targeted application or for the use in a graded solar cell, which when combined with material properties associated with defect and disorder tolerance, encourages further investigation into the group IV/V chalcohalide family for optoelectronic applications.

19.
Nat Commun ; 14(1): 3124, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253736

RESUMO

In principle, the induced chirality of hybrid perovskites results from symmetry-breaking within inorganic frameworks. However, the detailed mechanism behind the chirality transfer remains unknown due to the lack of systematic studies. Here, using the structural isomer with different functional group location, we deduce the effect of hydrogen-bonding interaction between two building blocks on the degree of chirality transfer in inorganic frameworks. The effect of asymmetric hydrogen-bonding interaction on chirality transfer was clearly demonstrated by thorough experimental analysis. Systematic studies of crystallography parameters confirm that the different asymmetric hydrogen-bonding interactions derived from different functional group location play a key role in chirality transfer phenomena and the resulting spin-related properties of chiral perovskites. The methodology to control the asymmetry of hydrogen-bonding interaction through the small structural difference of structure isomer cation can provide rational design paradigm for unprecedented spin-related properties of chiral perovskite.

20.
Chem Mater ; 35(9): 3652-3659, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37181672

RESUMO

Polarons are a type of localized excess charge in materials and often form in transition metal oxides. The large effective mass and confined nature of polarons make them of fundamental interest for photochemical and electrochemical reactions. The most studied polaronic system is rutile TiO2 where electron addition results in small polaron formation through the reduction of Ti(IV) d0 to Ti(III) d1 centers. Using this model system, we perform a systematic analysis of the potential energy surface based on semiclassical Marcus theory parametrized from the first-principles potential energy landscape. We show that F-doped TiO2 only binds polaron weakly with effective dielectric screening after the second nearest neighbor. To tailor the polaron transport, we compare TiO2 to two metal-organic frameworks (MOFs): MIL-125 and ACM-1. The choice of MOF ligands and connectivity of the TiO6 octahedra largely vary the shape of the diabatic potential energy surface and the polaron mobility. Our models are applicable to other polaronic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...