Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659811

RESUMO

Therapeutic use of tiny extracellular vesicles (EVs) requires understanding cargo loading mechanisms. Here, we used a modular proximity label approach to identify EV cargo associated with the transient potential channel (TRP) polycystin PKD-2 of C. elegans. Polycystins are conserved receptor-TRP channel proteins affecting cilium function; dysfunction causes polycystic kidney disease in humans and mating deficits in C. elegans. Polycystin-2 EV localization is conserved from algae to humans, hinting at an ancient and unknown function. We discovered that polycystins associate with and direct specific cargo to EVs: channel-like PACL-1, dorsal and ventral membrane C-type lectins PAMLs, and conserved tumor necrosis-associated factor (TRAF) signaling adaptors TRF-1 and TRF-2. Loading of these components relied on polycystin-1 LOV-1. Our modular EV-TurboID approach can be applied in both cell- and tissue-specific manners to define the composition of distinct EV subtypes, addressing a major challenge of the EV field.

2.
PLoS Genet ; 18(12): e1010560, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574451

RESUMO

The cilium acts as an antenna receiving and sending signals, the latter via extracellular vesicles (EVs). In C. elegans and mammals, the Autosomal Dominant Polycystic Kidney Disease (ADPKD) gene products polycystin-1 (PC1) and polycystin-2 (PC2) localize to both cilia and EVs, act in the same genetic pathway, and function in a sensory capacity, suggesting ancient conservation. However, the functions of the polycystins on cilia and EVs remain enigmatic. We used our C. elegans model and endogenously fluorescent-tagged LOV-1/polycystin-1 to study LOV-1 processing, trafficking, transport, EV biogenesis, and function in living animals. Super resolution, real time imaging reveals that LOV-1 is processed into N-terminal (NTM) and C-terminal (CTM) forms via a conserved GPCR proteolytic site (GPS). The LOV-1 NTM is secreted into the extracellular matrix and not localized to ciliary tip EVs. In contrast, LOV-1 CTM and PKD-2 are co-trafficked, co-transported, and co-localized in cilia and on environmentally released ciliary EVs. LOV-1 CTM requires PKD-2 for ciliary EV localization, while PKD-2 localizes to ciliary EVs independent of LOV-1. We find that LOV-1 but not PKD-2 is required for chemosensation of an ascaroside mating pheromone. These findings indicate that the polycystins LOV-1 and PKD-2 function together and independently and provide insight to how cargo is selected and packaged in ciliary EVs.


Assuntos
Proteínas de Caenorhabditis elegans , Vesículas Extracelulares , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/genética , Cílios/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Canais de Cátion TRPP/genética
3.
Curr Biol ; 32(9): 1924-1936.e6, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35334227

RESUMO

Extracellular vesicles (EVs) may mediate intercellular communication by carrying protein and RNA cargo. The composition, biology, and roles of EVs in physiology and pathology have been primarily studied in the context of biofluids and in cultured mammalian cells. The experimental tractability of C. elegans makes for a powerful in vivo animal system to identify and study EV cargo from its cellular source. We developed an innovative method to label, track, and profile EVs using genetically encoded, fluorescent-tagged EV cargo and conducted a large-scale isolation and proteomic profiling. Nucleic acid binding proteins (∼200) are overrepresented in our dataset. By integrating our EV proteomic dataset with single-cell transcriptomic data, we identified and validated ciliary EV cargo: CD9-like tetraspanin (TSP-6), ectonucleotide pyrophosphatase/phosphodiesterase (ENPP-1), minichromosome maintenance protein (MCM-3), and double-stranded RNA transporter SID-2. C. elegans EVs also harbor RNA, suggesting that EVs may play a role in extracellular RNA-based communication.


Assuntos
Caenorhabditis elegans , Vesículas Extracelulares , Animais , Caenorhabditis elegans/genética , Comunicação Celular , Vesículas Extracelulares/metabolismo , Mamíferos/genética , Proteômica , RNA
4.
Curr Biol ; 31(17): 3943-3951.e3, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34270950

RESUMO

Ciliary extracellular vesicle (EV) shedding is evolutionarily conserved. In Chlamydomonas and C. elegans, ciliary EVs act as signaling devices.1-3 In cultured mammalian cells, ciliary EVs regulate ciliary disposal but also receptor abundance and signaling, ciliary length, and ciliary membrane dynamics.4-7 Mammalian cilia produce EVs from the tip and along the ciliary membrane.8,9 This study aimed to determine the functional significance of shedding at distinct locations and to explore ciliary EV biogenesis mechanisms. Using Airyscan super-resolution imaging in living C. elegans animals, we find that neuronal sensory cilia shed TRP polycystin-2 channel PKD-2::GFP-carrying EVs from two distinct sites: the ciliary tip and the ciliary base. Ciliary tip shedding requires distal ciliary enrichment of PKD-2 by the myristoylated coiled-coil protein CIL-7. Kinesin-3 KLP-6 and intraflagellar transport (IFT) kinesin-2 motors are also required for ciliary tip EV shedding. A big unanswered question in the EV field is how cells sort EV cargo. Here, we show that two EV cargoes- CIL-7 and PKD-2-localized and trafficked differently along cilia and were sorted to different environmentally released EVs. In response to mating partners, C. elegans males modulate EV cargo composition by increasing the ratio of PKD-2 to CIL-7 EVs. Overall, our study indicates that the cilium and its trafficking machinery act as a specialized venue for regulated EV biogenesis and signaling.


Assuntos
Proteínas de Caenorhabditis elegans , Vesículas Extracelulares , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Vesículas Extracelulares/metabolismo , Masculino , Mamíferos , Transporte Proteico
5.
PLoS Genet ; 16(10): e1009052, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33064774

RESUMO

Ciliary microtubules are subject to post-translational modifications that act as a "Tubulin Code" to regulate motor traffic, binding proteins and stability. In humans, loss of CCP1, a cytosolic carboxypeptidase and tubulin deglutamylating enzyme, causes infantile-onset neurodegeneration. In C. elegans, mutations in ccpp-1, the homolog of CCP1, result in progressive degeneration of neuronal cilia and loss of neuronal function. To identify genes that regulate microtubule glutamylation and ciliary integrity, we performed a forward genetic screen for suppressors of ciliary degeneration in ccpp-1 mutants. We isolated the ttll-5(my38) suppressor, a mutation in a tubulin tyrosine ligase-like glutamylase gene. We show that mutation in the ttll-4, ttll-5, or ttll-11 gene suppressed the hyperglutamylation-induced loss of ciliary dye filling and kinesin-2 mislocalization in ccpp-1 cilia. We also identified the nekl-4(my31) suppressor, an allele affecting the NIMA (Never in Mitosis A)-related kinase NEKL-4/NEK10. In humans, NEK10 mutation causes bronchiectasis, an airway and mucociliary transport disorder caused by defective motile cilia. C. elegans NEKL-4 localizes to the ciliary base but does not localize to cilia, suggesting an indirect role in ciliary processes. This work defines a pathway in which glutamylation, a component of the Tubulin Code, is written by TTLL-4, TTLL-5, and TTLL-11; is erased by CCPP-1; is read by ciliary kinesins; and its downstream effects are modulated by NEKL-4 activity. Identification of regulators of microtubule glutamylation in diverse cellular contexts is important to the development of effective therapies for disorders characterized by changes in microtubule glutamylation. By identifying C. elegans genes important for neuronal and ciliary stability, our work may inform research into the roles of the tubulin code in human ciliopathies and neurodegenerative diseases.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Carboxipeptidases/genética , Degeneração Neural/genética , Peptídeo Sintases/genética , Tubulina (Proteína)/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Transporte/genética , Cílios/genética , Cílios/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Cinesinas/genética , Microtúbulos/genética , Mutação/genética , Quinases Relacionadas a NIMA/genética , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Processamento de Proteína Pós-Traducional/genética
6.
J Neurogenet ; 34(3-4): 323-334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32648491

RESUMO

Sexual dimorphism is a device that supports genetic diversity while providing selective pressure against speciation. This phenomenon is at the core of sexually reproducing organisms. Caenorhabditis elegans provides a unique experimental system where males exist in a primarily hermaphroditic species. Early works of John Sulston, Robert Horvitz, and John White provided a complete map of the hermaphrodite nervous system, and recently the male nervous system was added. This addition completely realized the vision of C. elegans pioneer Sydney Brenner: a model organism with an entirely mapped nervous system. With this 'connectome' of information available, great strides have been made toward understanding concepts such as how a sex-shared nervous system (in hermaphrodites and males) can give rise to sex-specific functions, how neural plasticity plays a role in developing a dimorphic nervous system, and how a shared nervous system receives and processes external cues in a sexually-dimorphic manner to generate sex-specific behaviors. In C. elegans, the intricacies of male-mating behavior have been crucial for studying the function and circuitry of the male-specific nervous system and used as a model for studying human autosomal dominant polycystic kidney disease (ADPKD). With the emergence of CRISPR, a seemingly limitless tool for generating genomic mutations with pinpoint precision, the C. elegans model system will continue to be a useful instrument for pioneering research in the fields of behavior, reproductive biology, and neurogenetics.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/anatomia & histologia , Proteínas de Ciclo Celular/genética , Organismos Hermafroditas/fisiologia , Sistema Nervoso/anatomia & histologia , Caracteres Sexuais , Estruturas Animais/crescimento & desenvolvimento , Estruturas Animais/inervação , Estruturas Animais/ultraestrutura , Animais , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Cílios/química , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Vesículas Extracelulares/fisiologia , Organismos Hermafroditas/ultraestrutura , Humanos , Interneurônios/fisiologia , Masculino , Sistema Nervoso/crescimento & desenvolvimento , Plasticidade Neuronal , Neurônios/classificação , Neurônios/fisiologia , Neurônios/ultraestrutura , Neurotransmissores/fisiologia , Não Disjunção Genética , Rim Policístico Autossômico Dominante/genética , Comportamento Sexual Animal/fisiologia , Canais de Cátion TRPP/genética , Fatores de Transcrição/fisiologia
7.
Elife ; 62017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28562242

RESUMO

Intraflagellar transport (IFT) trains, multimegadalton assemblies of IFT proteins and motors, traffic proteins in cilia. To study how trains assemble, we employed fluorescence protein-tagged IFT proteins in Chlamydomonas reinhardtii. IFT-A and motor proteins are recruited from the cell body to the basal body pool, assembled into trains, move through the cilium, and disperse back into the cell body. In contrast to this 'open' system, IFT-B proteins from retrograde trains reenter the pool and a portion is reused directly in anterograde trains indicating a 'semi-open' system. Similar IFT systems were also observed in Tetrahymena thermophila and IMCD3 cells. FRAP analysis indicated that IFT proteins and motors of a given train are sequentially recruited to the basal bodies. IFT dynein and tubulin cargoes are loaded briefly before the trains depart. We conclude that the pool contains IFT trains in multiple stages of assembly queuing for successive release into the cilium upon completion.


Assuntos
Proteínas de Transporte/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Substâncias Macromoleculares/metabolismo , Biogênese de Organelas , Multimerização Proteica , Recuperação de Fluorescência Após Fotodegradação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...