Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inflamm Res ; 16: 5339-5366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026235

RESUMO

Purpose: Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic (dysfunction) associated fatty liver disease (MAFLD), is the most common chronic liver disease in the United States. Presently, there is an intense and ongoing effort to identify and develop novel therapeutics for this disease. In this study, we explored the anti-inflammatory activity of a new compound, termed IOI-214, and its therapeutic potential to ameliorate NAFLD/MAFLD in male C57BL/6J mice fed a high fat (HF) diet. Methods: Murine macrophages and hepatocytes in culture were treated with lipopolysaccharide (LPS) ± IOI-214 or DMSO (vehicle), and RT-qPCR analyses of inflammatory cytokine gene expression were used to assess IOI-214's anti-inflammatory properties in vitro. Male C57BL/6J mice were also placed on a HF diet and treated once daily with IOI-214 or DMSO for 16 weeks. Tissues were collected and analyzed to determine the effects of IOI-214 on HF diet-induced NAFL D/MAFLD. Measurements such as weight, blood glucose, serum cholesterol, liver/serum triglyceride, insulin, and glucose tolerance tests, ELISAs, metabolomics, Western blots, histology, gut microbiome, and serum LPS binding protein analyses were conducted. Results: IOI-214 inhibited LPS-induced inflammation in macrophages and hepatocytes in culture and abrogated HF diet-induced mesenteric fat accumulation, hepatic inflammation and steatosis/hepatocellular ballooning, as well as fasting hyperglycemia without affecting insulin resistance or fasting insulin, cholesterol or TG levels despite overall obesity in vivo in male C57BL/6J mice. IOI-214 also decreased systemic inflammation in vivo and improved gut microbiota dysbiosis and leaky gut. Conclusion: Combined, these data indicate that IOI-214 works at multiple levels in parallel to inhibit the inflammation that drives HF diet-induced NAFLD/MAFLD, suggesting that it may have therapeutic potential for NAFLD/MAFLD.

2.
Viruses ; 15(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37243284

RESUMO

Interferon-γ (IFN-γ) is a cytokine that plays an important role in immune regulation, especially in the activation and differentiation of immune cells. Toll-like receptors (TLRs) are a family of pattern-recognition receptors that sense structural motifs related to pathogens and alert immune cells to the invasion. Both IFN-γ and TLR agonists have been used as immunoadjuvants to augment the efficacy of cancer immunotherapies and vaccines against infectious diseases or psychoactive compounds. In this study, we aimed to explore the potential of IFN-γ and TLR agonists being applied simultaneously to boost dendritic cell activation and the subsequent antigen presentation. In brief, murine dendritic cells were treated with IFN-γ and/or the TLR agonists, polyinosinic-polycytidylic acid (poly I:C), or resiquimod (R848). Next, the dendritic cells were stained for an activation marker, a cluster of differentiation 86 (CD86), and the percentage of CD86-positive cells was measured by flow cytometry. From the cytometric analysis, IFN-γ efficiently stimulated a considerable number of the dendritic cells, while the TLR agonists by themselves could merely activate a few compared to the control. The combination of IFN-γ with poly I:C or R848 triggered a higher amount of dendritic cell activation than IFN-γ alone. For instance, 10 ng/mL IFN-γ with 100 µg/mL poly I:C achieved 59.1% cell activation, which was significantly higher than the 33.4% CD86-positive cells obtained by 10 ng/mL IFN-γ. These results suggested that IFN-γ and TLR agonists could be applied as complementary systems to promote dendritic cell activation and antigen presentation. There might be a synergy between the two classes of molecules, but further investigation is warranted to ascertain the interaction of their promotive activities.


Assuntos
Interferon gama , Receptores Toll-Like , Camundongos , Animais , Interferon gama/farmacologia , Receptores Toll-Like/agonistas , Adjuvantes Imunológicos , Poli I-C/farmacologia , Células Dendríticas
3.
J Med Virol ; 95(2): e28503, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36655751

RESUMO

The hepatitis B virus core antigen (HBcAg) tolerates insertion of foreign epitopes and maintains its ability to self-assemble into virus-like particles (VLPs). We constructed a ∆HBcAg-based VLP vaccine expressing three predicted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B and T cell epitopes and determined its immunogenicity and protective efficacy. The recombinant ∆HBcAg-SARS-CoV-2 protein was expressed in Escherichia coli, purified, and shown to form VLPs. K18-hACE2 transgenic C57BL/6 mice were immunized intramuscularly with ∆HBcAg VLP control (n = 15) or ∆HBcAg-SARS-CoV-2 VLP vaccine (n = 15). One week after the 2nd booster and before virus challenge, five ∆HBcAg-SARS-CoV-2 vaccinated mice were euthanized to evaluate epitope-specific immune responses. There is a statistically significant increase in epitope-specific Immunoglobulin G (IgG) response, and statistically higher interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) expression levels in ∆HBcAg-SARS-CoV-2 VLP-vaccinated mice compared to ∆HBcAg VLP controls. While not statistically significant, the ∆HBcAg-SARS-CoV-2 VLP mice had numerically more memory CD8+ T-cells, and 3/5 mice also had numerically higher levels of interferon gamma (IFN-γ) and tumor necrosis factor (TNF). After challenge with SARS-CoV-2, ∆HBcAg-SARS-CoV-2 immunized mice had numerically lower viral RNA loads in the lung, and slightly higher survival, but the differences are not statistically significant. These results indicate that the ∆HBcAg-SARS-CoV-2 VLP vaccine elicits epitope-specific humoral and cell-mediated immune responses but they were insufficient against SARS-CoV-2 infection.


Assuntos
COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Camundongos , Animais , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B/genética , Epitopos de Linfócito T , SARS-CoV-2 , Camundongos Endogâmicos C57BL , Imunidade Celular , Proteínas Recombinantes
4.
Pancreas ; 51(1): 48-55, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195595

RESUMO

OBJECTIVE: Genetic and environmental influences play a role as triggers of type 1 diabetes mellitus (T1DM). Female nonobese diabetic (NOD) mice are useful for studying T1DM as they spontaneously develop T1DM, which can be accelerated by some viruses. Toll-like receptor 3 (TLR3) is believed to play a critical role in viral-induced T1DM and ß-cell destruction, because female Tlr3 knockout (Tlr3-/-) NOD mice are protected from Coxsackievirus B4 (CVB4)-induced acceleration of T1DM. However, the exact role(s) TLR3 plays in the pathogenesis of CVB4-induced T1DM remain unknown. METHODS: This longitudinal study used immunostaining, laser capture microdissection, and reverse transcription real-time polymerase chain reaction of islets from female uninfected and CVB4-infected Tlr3+/+ and Tlr3-/- NOD mice. RESULTS: Islets isolated from female Tlr3+/+ NOD mice 4 to 8 weeks of age had higher amounts of insulitis, Cxcl10, Il1b, Tnfa, and Tgfb1 expression compared with Tlr3-/- NOD mice. After CVB4 infection, Tlr3+/+ NOD mice had higher amounts of insulitis and T-cell infiltration at 3 days after infection compared with Tlr3-/- CVB4-infected NOD mice. CONCLUSIONS: Toll-like receptor 3 is necessary for establishment of a pancreatic islet inflammatory microenvironment by increasing insulitis and cytokine expression that facilitates CVB4-induced T1DM in female NOD mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/induzido quimicamente , Ilhotas Pancreáticas/metabolismo , Receptores Virais/metabolismo , Receptor 3 Toll-Like/metabolismo , Animais , Feminino , Imunoquímica , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos NOD
5.
Microorganisms ; 9(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34835482

RESUMO

Despite the 2019 Executive Order on Advancing American Kidney Health Initiative, kidney disease has moved up in rank from the 9th to the 8th leading cause of death in the United States. A recent push in the field of nephrology has been to identify molecular markers and/or molecular profiles involved in kidney disease process or injury that can help identify the cause of injury and predict patient outcomes. While these studies have had moderate success, they have not yet considered that many of the health conditions that cause kidney disease (diabetes, hypertension, etc.) can also be caused by environmental factors (such as viruses), which in and of themselves can cause kidney disease. Thus, the goal of this study was to identify molecular and phenotypic profiles that can differentiate kidney injury caused by diabetes (a health condition resulting in kidney disease) and coxsackievirus B4 (CVB4) exposure (which can cause diabetes and/or kidney disease), both alone and together. Non-obese diabetic (NOD) mice were used for this study due to their susceptibility to both type 1 diabetes (T1D)- and CVB4-mediated kidney injury, in order to glean a better understanding of how hyperglycemia and viral exposure, when occurring on their own and in combination, may alter the kidneys' molecular and phenotypic profiles. While no changes in kidney function were observed, molecular biomarkers of kidney injury were significantly up- and downregulated based on T1D and CVB4 exposure, both alone and together, but not in a predictable pattern. By combining individual biomarkers with function and phenotypic measurements (i.e., urinary albumin creatinine ratio, serum creatinine, kidney weight, and body weight), we were able to perform an unbiased separation of injury group based on the type of injury. This study provides evidence that unique kidney injury profiles within a kidney disease health condition are identifiable, and will help us to identify the causes of kidney injury in the future.

6.
Viral Immunol ; 33(7): 494-506, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32352894

RESUMO

End-stage renal disease (ESRD) is described by four primary diagnoses, diabetes, hypertension, glomerulonephritis, and cystic kidney disease, all of which have viruses implicated as causative agents. Enteroviruses, such as coxsackievirus (CV), are a common genus of viruses that have been implicated in both diabetes and cystic kidney disease; however, little is known about how CVs cause kidney injury and ESRD or predispose individuals with a genetic susceptibility to type 1 diabetes (T1D) to kidney injury. This study evaluated kidney injury resulting from coxsackievirus B4 (CVB4) inoculation of non-obese diabetic (NOD) mice to glean a better understanding of how viral exposure may predispose individuals with a genetic susceptibility to T1D to kidney injury. The objectives were to assess acute and chronic kidney damage in CVB4-inoculated NOD mice without diabetes. Results indicated the presence of CVB4 RNA in the kidney for at least 14 days post-CVB4 inoculation and a coordinated pattern recognition receptor response, but the absence of an immune response or cytotoxicity. CVB4-inoculated NOD mice also had a higher propensity to develop an increase in mesangial area 17 weeks post-CVB4 inoculation. These studies identified initial gene expression changes in the kidney resulting from CVB4 exposure that may predispose to ESRD. Thus, this study provides an initial characterization of kidney injury resulting from CVB4 inoculation of mice that are genetically susceptible to developing T1D that may one day provide better therapeutic options and predictive measures for patients who are at risk for developing kidney disease from T1D.


Assuntos
Infecções por Coxsackievirus/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/virologia , Enterovirus Humano B , Receptores de Reconhecimento de Padrão/genética , Animais , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Interações entre Hospedeiro e Microrganismos , Humanos , Rim/patologia , Rim/virologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/virologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Transdução de Sinais
7.
Mol Cancer Res ; 13(3): 524-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25504371

RESUMO

UNLABELLED: Angiogenic remodeling during embryonic development and in adult tissue homeostasis is orchestrated by cooperative signaling between several distinct molecular pathways, which are often exploited by tumors. Indeed, tumors upregulate proangiogenic molecules while simultaneously suppressing angiostatic pathways to recruit blood vessels for growth, survival, and metastatic spread. Understanding how cancers exploit proangiogenic and antiangiogenic signals is a key step in developing new, molecularly targeted antiangiogenic therapies. While EphA2, a receptor tyrosine kinase (RTK), is required for VEGF-induced angiogenesis, the mechanism through which these pathways intersect remains unclear. Slit2 expression is elevated in EphA2-deficient endothelium, and here it is reported that inhibiting Slit activity rescues VEGF-induced angiogenesis in cell culture and in vivo, as well as VEGF-dependent tumor angiogenesis, in EphA2-deficient endothelial cells and animals. Moreover, blocking Slit activity or Slit2 expression in EphA2-deficient endothelial cells restores VEGF-induced activation of Src and Rac, both of which are required for VEGF-mediated angiogenesis. These data suggest that EphA2 suppression of Slit2 expression and Slit angiostatic activity enables VEGF-induced angiogenesis in vitro and in vivo, providing a plausible mechanism for impaired endothelial responses to VEGF in the absence of EphA2 function. IMPLICATIONS: Modulation of angiostatic factor Slit2 by EphA2 receptor regulates endothelial responses to VEGF-mediated angiogenesis and tumor neovascularization.


Assuntos
Endotélio/irrigação sanguínea , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Receptor EphA2/deficiência , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados , Endotélio/metabolismo , Feminino , Pulmão/irrigação sanguínea , Pulmão/citologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Transdução de Sinais
8.
PLoS One ; 6(9): e24426, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935409

RESUMO

Pre-clinical studies provide compelling evidence that Eph family receptor tyrosine kinases (RTKs) and ligands promote cancer growth, neovascularization, invasion, and metastasis. Tumor suppressive roles have also been reported for the receptors, however, creating a potential barrier for clinical application. Determining how these observations relate to clinical outcome is a crucial step for translating the biological and mechanistic data into new molecularly targeted therapies. We investigated eph and ephrin expression in human breast cancer relative to endpoints of overall and/or recurrence-free survival in large microarray datasets. We also investigated protein expression in commercial human breast tissue microarrays (TMA) and Stage I prognostic TMAs linked to recurrence outcome data. We found significant correlations between ephA2, ephA4, ephA7, ephB4, and ephB6 and overall and/or recurrence-free survival in large microarray datasets. Protein expression in TMAs supported these trends. While observed no correlation between ephrin ligand expression and clinical outcome in microarray datasets, ephrin-A1 and EphA2 protein co-expression was significantly associated with recurrence in Stage I prognostic breast cancer TMAs. Our data suggest that several Eph family members are clinically relevant and tractable targets for intervention in human breast cancer. Moreover, profiling Eph receptor expression patterns in the context of relevant ligands and in the context of stage may be valuable in terms of diagnostics and treatment.


Assuntos
Neoplasias da Mama/metabolismo , Efrinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Mama/genética , Efrina-A1/genética , Efrina-A1/metabolismo , Efrinas/genética , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Receptor EphA2/genética , Receptor EphA2/metabolismo , Receptor EphA4/genética , Receptor EphA4/metabolismo , Receptor EphA7/genética , Receptor EphA7/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Receptor EphB6/genética , Receptor EphB6/metabolismo , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...