Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064969

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive solid malignancies with a poor prognosis. Obesity and type 2 diabetes mellitus (T2DM) are two major risk factors linked to the development and progression of PDAC, both often characterized by high blood glucose levels. Macrophages represent the main immune cell population in PDAC contributing to PDAC development. It has already been shown that pancreatic ductal epithelial cells (PDEC) undergo epithelial-mesenchymal transition (EMT) when exposed to hyperglycemia or macrophages. Thus, this study aimed to investigate whether concomitant exposure to hyperglycemia and macrophages aggravates EMT-associated alterations in PDEC. Exposure to macrophages and elevated glucose levels (25 mM glucose) impacted gene expression of EMT inducers such as IL-6 and TNF-α as well as EMT transcription factors in benign (H6c7-pBp) and premalignant (H6c7-kras) PDEC. Most strikingly, exposure to hyperglycemic coculture with macrophages promoted downregulation of the epithelial marker E-cadherin, which was associated with an elevated migratory potential of PDEC. While blocking IL-6 activity by tocilizumab only partially reverted the EMT phenotype in H6c7-kras cells, neutralization of TNF-α by etanercept was able to clearly impair EMT-associated properties in premalignant PDEC. Altogether, the current study attributes a role to a T2DM-related hyperglycemic, inflammatory micromilieu in the acquisition of malignancy-associated alterations in premalignant PDEC, thus providing new insights on how metabolic diseases might promote PDAC initiation.


Assuntos
Carcinoma Ductal Pancreático/patologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Hiperglicemia/complicações , Macrófagos/imunologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Diabetes Mellitus Tipo 2/fisiopatologia , Células Epiteliais/metabolismo , Humanos , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais
2.
PLoS One ; 15(9): e0239369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997691

RESUMO

Cancer vaccinations sensitize the immune system to recognize tumor-specific antigens de novo or boosting preexisting immune responses. Dendritic cells (DCs) are regarded as the most potent antigen presenting cells (APCs) for induction of (cancer) antigen-specific CD8+ T cell responses. Chitosan nanoparticles (CNPs) used as delivery vehicle have been shown to improve anti-tumor responses. This study aimed at exploring the potential of CNPs as antigen delivery system by assessing activation and expansion of antigen-specific CD8+ T cells by DCs and subsequent T cell-mediated lysis of pancreatic ductal adenocarcinoma (PDAC) cells. As model antigen the ovalbumin-derived peptide SIINFEKL was chosen. Using imaging cytometry, intracellular uptake of FITC-labelled CNPs of three different sizes and qualities (90/10, 90/20 and 90/50) was demonstrated in DCs and in pro- and anti-inflammatory macrophages to different extents. While larger particles (90/50) impaired survival of all APCs, small CNPs (90/10) were not toxic for DCs. Internalization of SIINFEKL-loaded but not empty 90/10-CNPs promoted a pro-inflammatory phenotype of DCs indicated by elevated expression of pro-inflammatory cytokines. Treatment of murine DC2.4 cells with SIINFEKL-loaded 90/10-CNPs led to a marked MHC-related presentation of SIINFEKL and enabled DC2.4 cells to potently activate SIINFEKL-specific CD8+ OT-1 T cells finally leading to effective lysis of the PDAC cell line Panc-OVA. Overall, our study supports the suitability of CNPs as antigen vehicle to induce potent anti-tumor immune responses by activation and expansion of tumor antigen-specific CD8+ T cells.


Assuntos
Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Quitosana/química , Portadores de Fármacos/química , Nanopartículas/química , Animais , Linfócitos T CD8-Positivos/citologia , Linhagem Celular , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/imunologia , Humanos , Camundongos , Fenótipo , Vacinação
3.
J Math Biol ; 81(2): 649-690, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32761360

RESUMO

We investigate how to characterize the kinetic parameters of an aminotransaminase using a non-standard coupled (or auxiliary) enzyme assay, where the peculiarity arises for two reasons. First, one of the products of the auxiliary enzyme is a substrate for the primary enzyme and, second, we explicitly account for the reversibility of the auxiliary enzyme reaction. Using singular perturbation theory, we characterize the two distinguished asymptotic limits in terms of the strength of the reverse reaction, which allows us to determine how to deduce the kinetic parameters of the primary enzyme for a characterized auxiliary enzyme. This establishes a parameter-estimation algorithm that is applicable more generally to similar reaction networks. We demonstrate the applicability of our theory by performing enzyme assays to characterize a novel putative aminotransaminase enzyme, CnAptA (UniProtKB Q0KEZ8) from Cupriavidus necator H16, for two different omega-amino acid substrates.


Assuntos
Ensaios Enzimáticos , Modelos Biológicos , Algoritmos , Cupriavidus necator/enzimologia , Cinética , Transaminases/metabolismo
4.
Biotechnol Biofuels ; 12: 150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236137

RESUMO

BACKGROUND: 3-Hydroxypropionic acid (3-HP) is a promising platform chemical with various industrial applications. Several metabolic routes to produce 3-HP from organic substrates such as sugars or glycerol have been implemented in yeast, enterobacterial species and other microorganisms. In this study, the native 3-HP metabolism of Cupriavidus necator was investigated and manipulated as it represents a promising chassis for the production of 3-HP and other fatty acid derivatives from CO2 and H2. RESULTS: When testing C. necator for its tolerance towards 3-HP, it was noted that it could utilise the compound as the sole source of carbon and energy, a highly undesirable trait in the context of biological 3-HP production which required elimination. Inactivation of the methylcitrate pathway needed for propionate utilisation did not affect the organism's ability to grow on 3-HP. Putative genes involved in 3-HP degradation were identified by bioinformatics means and confirmed by transcriptomic analyses, the latter revealing considerably increased expression in the presence of 3-HP. Genes identified in this manner encoded three putative (methyl)malonate semialdehyde dehydrogenases (mmsA1, mmsA2 and mmsA3) and two putative dehydrogenases (hpdH and hbdH). These genes, which are part of three separate mmsA operons, were inactivated through deletion of the entire coding region, either singly or in various combinations, to engineer strains unable to grow on 3-HP. Whilst inactivation of single genes or double deletions could only delay but not abolish growth, a triple ∆mmsA1∆mmsA2∆mmsA3 knock-out strain was unable utilise 3-HP as the sole source of carbon and energy. Under the used conditions this strain was also unable to co-metabolise 3-HP alongside other carbon and energy sources such as fructose and CO2/H2. Further analysis suggested primary roles for the different mmsA operons in the utilisation of ß-alanine generating substrates (mmsA1), degradation of 3-HP (mmsA2), and breakdown of valine (mmsA3). CONCLUSIONS: Three different (methyl)malonate semialdehyde dehydrogenases contribute to 3-HP breakdown in C. necator H16. The created triple ∆mmsA1∆mmsA2∆mmsA3 knock-out strain represents an ideal chassis for autotrophic 3-HP production.

5.
J Biotechnol ; 232: 99-109, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26528625

RESUMO

In this work the role of γ-glutamyl transpeptidase in the metabolism of γ-glutamyl dipeptides produced by Corynebacterium glutamicum ATCC 13032 was studied. The enzyme is encoded by the gene ggtB (cg1090) and synthesized as a 657 amino acids long preprotein. Gamma-glutamyl transpeptidase activity was found to be associated with intact cells of C. glutamicum and was abolished upon deletion of ggtB. Bioinformatic analysis indicated that the enzyme is a lipoprotein and is attached to the outer side of the cytoplasmic membrane. Biochemical parameters of recombinant GgtB were determined using the chromogenic substrate γ-glutamyl-p-nitroanilide. Highest activity of the enzyme was measured in sodium bicarbonate buffer at pH 9.6 and 45°C. The KM value was 123µM. GgtB catalyzed the concentration-dependent synthesis and hydrolysis of γ-glutamyl dipeptides and showed strong glutaminase activity. The intracellular concentrations of five γ-glutamyl dipeptides (γ-Glu-Glu, γ-Glu-Gln, γ-Glu-Val, γ-Glu-Leu, γ-Glu-Met) were determined by HPLC-MS and ranged from 0.15 to 0.4mg/g CDW after exponential growth in minimal media. Although deletion and overexpression of ggtB had significant effects on intracellular dipeptide concentrations, it was neither essential for biosynthesis nor catabolism of these dipeptides in vivo.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Dipeptídeos/metabolismo , gama-Glutamiltransferase/genética , Aminoácidos/análise , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Dipeptídeos/análise , Hidrólise , gama-Glutamiltransferase/metabolismo
6.
J Proteomics ; 125: 1-16, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25896738

RESUMO

Acarbose is an α-glucosidase inhibitor produced by Actinoplanes sp. SE50/110 that is medically important due to its application in the treatment of type2 diabetes. In this work, a comprehensive proteome analysis of Actinoplanes sp. SE50/110 was carried out to determine the location of proteins of the acarbose (acb) and the putative pyochelin (pch) biosynthesis gene cluster. Therefore, a comprehensive state-of-the-art proteomics approach combining subcellular fractionation, shotgun proteomics and spectral counting to assess the relative abundance of proteins within fractions was applied. The analysis of four different proteome fractions (cytosolic, enriched membrane, membrane shaving and extracellular fraction) resulted in the identification of 1582 of the 8270 predicted proteins. All 22 Acb-proteins and 21 of the 23 Pch-proteins were detected. Predicted membrane-associated, integral membrane or extracellular proteins of the pch and the acb gene cluster were found among the most abundant proteins in corresponding fractions. Intracellular biosynthetic proteins of both gene clusters were not only detected in the cytosolic, but also in the enriched membrane fraction, indicating that the biosynthesis of acarbose and putative pyochelin metabolites takes place at the inner membrane. BIOLOGICAL SIGNIFICANCE: Actinoplanes sp. SE50/110 is a natural producer of the α-glucosidase inhibitor acarbose, a bacterial secondary metabolite that is used as a drug for the treatment of type 2 diabetes, a disease which is a global pandemic that currently affects 387 million people and accounts for 11% of worldwide healthcare expenditures (www.idf.org). The work presented here is the first comprehensive investigation of protein localization and abundance in Actinoplanes sp. SE50/110 and provides an extensive source of information for the selection of genes for future mutational analysis and other hypothesis driven experiments. The conclusion that acarbose or pyochelin family siderophores are synthesized at the inner side of the cytoplasmic membrane determined from this work, indicates that studying corresponding intermediates will be challenging. In addition to previous studies on the genome and transcriptome, the work presented here demonstrates that the next omic level, the proteome, is now accessible for detailed physiological analysis of Actinoplanes sp. SE50/110, as well as mutants derived from this and related species.


Assuntos
Acarbose/metabolismo , Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Família Multigênica , Fenóis/metabolismo , Proteoma/metabolismo , Tiazóis/metabolismo , Actinobacteria/genética , Proteínas de Bactérias/genética , Proteoma/genética , Proteômica/métodos
7.
PLoS One ; 9(11): e113909, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426929

RESUMO

Adduct formation, fragmentation events and matrix effects impose special challenges to the identification and quantitation of metabolites in LC-ESI-MS datasets. An important step in compound identification is the deconvolution of mass signals. During this processing step, peaks representing adducts, fragments, and isotopologues of the same analyte are allocated to a distinct group, in order to separate peaks from coeluting compounds. From these peak groups, neutral masses and pseudo spectra are derived and used for metabolite identification via mass decomposition and database matching. Quantitation of metabolites is hampered by matrix effects and nonlinear responses in LC-ESI-MS measurements. A common approach to correct for these effects is the addition of a U-13C-labeled internal standard and the calculation of mass isotopomer ratios for each metabolite. Here we present a new web-platform for the analysis of LC-ESI-MS experiments. ALLocator covers the workflow from raw data processing to metabolite identification and mass isotopomer ratio analysis. The integrated processing pipeline for spectra deconvolution "ALLocatorSD" generates pseudo spectra and automatically identifies peaks emerging from the U-13C-labeled internal standard. Information from the latter improves mass decomposition and annotation of neutral losses. ALLocator provides an interactive and dynamic interface to explore and enhance the results in depth. Pseudo spectra of identified metabolites can be stored in user- and method-specific reference lists that can be applied on succeeding datasets. The potential of the software is exemplified in an experiment, in which abundance fold-changes of metabolites of the l-arginine biosynthesis in C. glutamicum type strain ATCC 13032 and l-arginine producing strain ATCC 21831 are compared. Furthermore, the capability for detection and annotation of uncommon large neutral losses is shown by the identification of (γ-)glutamyl dipeptides in the same strains. ALLocator is available online at: https://allocator.cebitec.uni-bielefeld.de. A login is required, but freely available.


Assuntos
Cromatografia Líquida/métodos , Corynebacterium glutamicum/metabolismo , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Arginina/análise , Arginina/metabolismo , Corynebacterium glutamicum/química , Bases de Dados Factuais , Dipeptídeos/análise , Dipeptídeos/metabolismo , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Internet , Software
8.
J Biotechnol ; 189: 76-7, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25193709

RESUMO

We report the complete genome sequence of Corynebacterium casei LMG S-19264(T) (=DSM 44701(T)) which was isolated from the surface of an Irish farmhouse smear-ripened cheese. The genome of C. casei LMG S-19264(T) consists of three replicons: the chromosome (3,113,488 bp, 55.69% G+C content), the plasmid pCASE1 (2461 bp, 56.77% G+C content) and the plasmid pCASE2 (16,264 bp, 55.08% G+C content), encoding a total of 2908 protein coding genes. Analysis of the sequence data revealed a large region of ∼ 98 kb with an average G+C content of ∼ 65% that was acquired by horizontal gene transfer.


Assuntos
Queijo/microbiologia , Corynebacterium/genética , Genoma Bacteriano/genética , Dados de Sequência Molecular
9.
J Biotechnol ; 191: 113-20, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25169663

RESUMO

In this work the biosynthesis of the type 2 diabetes mellitus therapeutic acarviosyl-maltose (acarbose) and related acarviose metabolites produced by Actinoplanes sp. SE50/110 was studied in liquid minimal medium supplemented with the defined carbon sources maltose, glucose, galactose or mixtures of maltose/glucose and maltose/galactose. Quantifying acarviosyl-maltose by HPLC and UV detection revealed that only cultures grown in maltose-containing minimal media produced acarviosyl-maltose in significant amounts. A qualitative analysis of the cytosolic and extracellular proteome for the presence of proteins from the acarbose biosynthesis gene cluster showed that these were not only synthesized in maltose-containing media, but also in media with glucose or galactose as the sole carbon source. A LC-MS-based detection method was applied to test the hypothesis that different acarviose metabolites are produced in media with maltose, glucose or galactose. The analysis revealed that a spectrum of acarviose metabolites (acarviose with 1-4 glucose equivalent units) was formed under all tested conditions. As expected, in maltose-containing minimal media acarviosyl-maltose was produced as the major component exceeding the remaining minor components by 2-3 orders of magnitude. In minimal medium supplemented with glucose acarviosyl-glucose was the major component, while in minimal medium with galactose no major component was present. Based on the results presented, a model for the intracellular biosynthesis of major and minor acarviose metabolites was developed.


Assuntos
Acarbose/metabolismo , Carbono/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Acarbose/química , Acarbose/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Galactose/química , Glucose/química , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Humanos , Maltose/química
10.
BMC Genomics ; 14: 713, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24138314

RESUMO

BACKGROUND: Arginine biosynthesis in Corynebacterium glutamicum consists of eight enzymatic steps, starting with acetylation of glutamate, catalysed by N-acetylglutamate synthase (NAGS). There are different kinds of known NAGSs, for example, "classical" ArgA, bifunctional ArgJ, ArgO, and S-NAGS. However, since C. glutamicum possesses a monofunctional ArgJ, which catalyses only the fifth step of the arginine biosynthesis pathway, glutamate must be acetylated by an as of yet unknown NAGS gene. RESULTS: Arginine biosynthesis was investigated by metabolome profiling using defined gene deletion mutants that were expected to accumulate corresponding intracellular metabolites. HPLC-ESI-qTOF analyses gave detailed insights into arginine metabolism by detecting six out of seven intermediates of arginine biosynthesis. Accumulation of N-acetylglutamate in all mutants was a further confirmation of the unknown NAGS activity. To elucidate the identity of this gene, a genomic library of C. glutamicum was created and used to complement an Escherichia coli ΔargA mutant. The plasmid identified, which allowed functional complementation, contained part of gene cg3035, which contains an acetyltransferase domain in its amino acid sequence. Deletion of cg3035 in the C. glutamicum genome led to a partial auxotrophy for arginine. Heterologous overexpression of the entire cg3035 gene verified its ability to complement the E. coli ΔargA mutant in vivo and homologous overexpression led to a significantly higher intracellular N-acetylglutamate pool. Enzyme assays confirmed the N-acetylglutamate synthase activity of Cg3035 in vitro. However, the amino acid sequence of Cg3035 revealed no similarities to members of known NAGS gene families. CONCLUSIONS: The N-acetylglutamate synthase Cg3035 is able to catalyse the first step of arginine biosynthesis in C. glutamicum. It represents a novel class of NAGS genes apparently present only in bacteria of the suborder Corynebacterineae, comprising amongst others the genera Corynebacterium, Mycobacterium, and Nocardia. Therefore, the name C-NAGS (Corynebacterineae-type NAGS) is proposed for this new family.


Assuntos
Aminoácido N-Acetiltransferase/genética , Arginina/biossíntese , Corynebacterium glutamicum/enzimologia , Aminoácido N-Acetiltransferase/metabolismo , Cromatografia Líquida de Alta Pressão , Corynebacterium glutamicum/classificação , Corynebacterium glutamicum/metabolismo , Biblioteca Gênica , Glutamatos/análise , Metaboloma , Filogenia , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...