Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 164: 107279, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567983

RESUMO

The obesity pandemic is presumed to be accelerated by endocrine disruptors such as phthalate-plasticizers, which interfere with adipose tissue function. With the restriction of the plasticizer di-(2-ethylhexyl)-phthalate (DEHP), the search for safe substitutes gained importance. Focusing on the master regulator of adipogenesis and adipose tissue functionality, the peroxisome proliferator-activated receptor gamma (PPARγ), we evaluated 20 alternative plasticizers as well as their metabolites for binding to and activation of PPARγ and assessed effects on adipocyte lipid accumulation. Among several compounds that showed interaction with PPARγ, the metabolites MINCH, MHINP, and OH-MPHP of the plasticizers DINCH, DINP, and DPHP exerted the highest adipogenic potential in human adipocytes. These metabolites and their parent plasticizers were further analyzed in human preadipocytes and mature adipocytes using cellular assays and global proteomics. In preadipocytes, the plasticizer metabolites significantly increased lipid accumulation, enhanced leptin and adipsin secretion, and upregulated adipogenesis-associated markers and pathways, in a similar pattern to the PPARγ agonist rosiglitazone. Proteomics of mature adipocytes revealed that both, the plasticizers and their metabolites, induced oxidative stress, disturbed lipid storage, impaired metabolic homeostasis, and led to proinflammatory and insulin resistance promoting adipokine secretion. In conclusion, the plasticizer metabolites enhanced preadipocyte differentiation, at least partly mediated by PPARγ activation and, together with their parent plasticizers, affected the functionality of mature adipocytes similar to reported effects of a high-fat diet. This highlights the need to further investigate the currently used plasticizer alternatives for potential associations with obesity and the metabolic syndrome.


Assuntos
Adipogenia , Dietilexilftalato , Adipócitos/metabolismo , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Homeostase , Humanos , Lipídeos , Obesidade/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Ácidos Ftálicos , Plastificantes/metabolismo , Plastificantes/toxicidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-34639632

RESUMO

Sensing microbial tryptophan catabolites by the aryl hydrocarbon receptor (AhR) plays a pivotal role in host-microbiome homeostasis by modulating the host immune response. Nevertheless, the involved cellular processes triggered by the metabolites are mainly unknown. Here, we analyzed proteomic changes in macrophages after treatment with the tryptophan metabolites indole-3-acetic acid (I3AA) or indole-3-aldehyde (IAld), as well as the prototypic exogenous AhR-ligand benzo(a)pyrene (BaP) in the absence and presence of lipopolysaccharide (LPS) to identify affected cellular processes and pathways. The AhR-ligands regulated metabolic and immunologic processes in dependency of LPS co-stimulation. All investigated ligands time-dependently enhanced fatty acid ß-oxidation. Differences due to the combination with LPS were observed for all three ligands. Additionally, oxidative phosphorylation was significantly increased by IAld and I3AA in a time and LPS-dependent manner. Immunoregulatory processes were affected in distinct ways. While BaP and I3AA up-regulated IL-8 signaling, IL-6 signaling was decreased by IAld. BaP decreased the inflammasome pathway. Thus, AhR-ligand-dependent regulations were identified, which may modulate the response of macrophages to bacterial infections, but also the commensal microbiota through changes in immune cell signaling and metabolic pathways that may also alter functionality. These findings highlight the relevance of AhR for maintaining microbial homeostasis and, consequently, host health.


Assuntos
Receptores de Hidrocarboneto Arílico , Triptofano , Endotoxinas , Humanos , Macrófagos , Proteômica
3.
Front Immunol ; 12: 620270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868237

RESUMO

Emerging studies revealed that the Aryl hydrocarbon receptor (AhR), a receptor sensing environmental contaminants, is executing an immunomodulatory function. However, it is an open question to which extent this is achieved by its role as a transcription factor or via non-genomic signaling. We utilized a multi-post-translational modification-omics approach to examine non-genomic AhR-signaling after activation with endogenous (FICZ) or exogenous (BaP) ligand in endotoxin-activated (LPS) monocyte-derived macrophages. While AhR activation affected abundances of few proteins, regulation of ubiquitination and phosphorylation were highly pronounced. Although the number and strength of effects depended on the applied AhR-ligand, both ligands increased ubiquitination of Rac1, which participates in PI3K/AKT-pathway-dependent macrophage activation, resulting in a pro-inflammatory phenotype. In contrast, co-treatment with ligand and LPS revealed a decreased AKT activity mediating an anti-inflammatory effect. Thus, our data show an immunomodulatory effect of AhR activation through a Rac1ubiquitination-dependent mechanism that attenuated AKT-signaling, resulting in a mitigated inflammatory response.


Assuntos
Endotoxinas/imunologia , Meio Ambiente , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Estresse Fisiológico , Biomarcadores , Cromatografia Líquida , Expressão Gênica , Humanos , Imunidade , Ligantes , Fosforilação , Espectrometria de Massas em Tandem , Fatores de Necrose Tumoral/metabolismo , Ubiquitinação
4.
Front Cell Dev Biol ; 8: 566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733884

RESUMO

Ketohexokinase (KHK) is the first and rate-limiting enzyme of fructose metabolism. Expression of the two alternatively spliced KHK isoforms, KHK-A and KHK-C, is tissue-specific and KHK-C is predominantly expressed in liver, kidney and intestine and responsible for the fructose-catabolizing function. While KHK isoform choice has been linked to the development of disorders such as obesity, diabetes, cardiovascular disease and cancer, little is known about the regulation of total KHK expression. In the present study, we investigated how hypoxic signaling influences fructose metabolism in the liver. Hypoxia or von Hippel-Lindau (VHL) tumor suppressor loss leads to the stabilization of hypoxia-inducible factors alpha (HIF-1α and HIF-2α) and the activation of their signaling to mediate adaptive responses. By studying liver-specific Vhl, Vhl/Hif1a, and Vhl/Epas1 knockout mice, we found that KHK expression is suppressed by HIF-2α (encoded by Epas1) but not by HIF-1α signaling on mRNA and protein levels. Reduced KHK levels were accompanied by downregulation of aldolase B (ALDOB) in the livers of Vhl and Vhl/Hif1a knockout mice, further indicating inhibited fructose metabolism. HIF-1α and HIF-2α have both overlapping and distinct target genes but are differentially regulated depending on the cell type and physiologic or pathologic conditions. HIF-2α activation augments peroxisome degradation in mammalian cells by pexophagy and thereby changes lipid composition reminiscent of peroxisomal disorders. We further demonstrated that fructose metabolism is negatively regulated by peroxisome-deficiency in a Pex2 knockout Zellweger mouse model, which lacks functional peroxisomes and is characterized by widespread metabolic dysfunction. Repression of fructolytic genes in Pex2 knockout mice appeared to be independent of PPARα signaling and nutritional status. Interestingly, our results demonstrate that both HIF-2α and peroxisome-deficiency result in downregulation of Khk independent of splicing as both isoforms, Khka as well as Khkc, are significantly downregulated. Hence, our study offers new and unexpected insights into the general regulation of KHK, and therefore fructolysis. We revealed a novel regulatory function of HIF-2α, suggesting that HIF-1α and HIF-2α have tissue-specific opposing roles in the regulation of Khk expression, isoform choice and fructolysis. In addition, we discovered a previously unknown function of peroxisomes in the regulation of fructose metabolism.

5.
Cell Metab ; 28(5): 706-720.e6, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122555

RESUMO

Mitochondrial function is important for aspartate biosynthesis in proliferating cells. Here, we show that mitochondrial aspartate export via the aspartate-glutamate carrier 1 (AGC1) supports cell proliferation and cellular redox homeostasis. Insufficient cytosolic aspartate delivery leads to cell death when TCA cycle carbon is reduced following glutamine withdrawal and/or glutaminase inhibition. Moreover, loss of AGC1 reduces allograft tumor growth that is further compromised by treatment with the glutaminase inhibitor CB-839. Together, these findings argue that mitochondrial aspartate export sustains cell survival in low-glutamine environments and AGC1 inhibition can synergize with glutaminase inhibition to limit tumor growth.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiporters/metabolismo , Ácido Aspártico/metabolismo , Sobrevivência Celular , Citosol/metabolismo , Glutamina/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Ciclo do Ácido Cítrico , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neoplasias/metabolismo
6.
Cell Metab ; 20(5): 882-897, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25440060

RESUMO

Peroxisomes play a central role in lipid metabolism, and their function depends on molecular oxygen. Low oxygen tension or von Hippel-Lindau (Vhl) tumor suppressor loss is known to stabilize hypoxia-inducible factors alpha (Hif-1α and Hif-2α) to mediate adaptive responses, but it remains unknown if peroxisome homeostasis and metabolism are interconnected with Hif-α signaling. By studying liver-specific Vhl, Vhl/Hif1α, and Vhl/Hif2α knockout mice, we demonstrate a regulatory function of Hif-2α signaling on peroxisomes. Hif-2α activation augments peroxisome turnover by selective autophagy (pexophagy) and thereby changes lipid composition reminiscent of peroxisomal disorders. The autophagy receptor Nbr1 localizes to peroxisomes and is likewise degraded by Hif-2α-mediated pexophagy. Furthermore, we demonstrate that peroxisome abundance is reduced in VHL-deficient human clear cell renal cell carcinomas with high HIF-2α levels. These results establish Hif-2α as a negative regulator of peroxisome abundance and metabolism and suggest a mechanism by which cells attune peroxisomal function with oxygen availability.


Assuntos
Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Peroxissomos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Camundongos Knockout , Peroxissomos/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
7.
World J Biol Chem ; 4(4): 131-40, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24340136

RESUMO

AIM: To describe the way stations of high-density lipoprotein (HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescence microscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type I mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrin-coated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.

8.
J Inherit Metab Dis ; 36(6): 913-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23355087

RESUMO

Elevated urinary excretion of 3-methylglutaconic acid is considered rare in patients suspected of a metabolic disorder. In 3-methylglutaconyl-CoA hydratase deficiency (mutations in AUH), it derives from leucine degradation. In all other disorders with 3-methylglutaconic aciduria the origin is unknown, yet mitochondrial dysfunction is thought to be the common denominator. We investigate the biochemical, clinical and genetic data of 388 patients referred to our centre under suspicion of a metabolic disorder showing 3-methylglutaconic aciduria in routine metabolic screening. Furthermore, we investigate 591 patients with 50 different, genetically proven, mitochondrial disorders for the presence of 3-methylglutaconic aciduria. Three percent of all urine samples of the patients referred showed 3-methylglutaconic aciduria, often in correlation with disorders not reported earlier in association with 3-methylglutaconic aciduria (e.g. organic acidurias, urea cycle disorders, haematological and neuromuscular disorders). In the patient cohort with genetically proven mitochondrial disorders 11% presented 3-methylglutaconic aciduria. It was more frequently seen in ATPase related disorders, with mitochondrial DNA depletion or deletion, but not in patients with single respiratory chain complex deficiencies. Besides, it was a consistent feature of patients with mutations in TAZ, SERAC1, OPA3, DNAJC19 and TMEM70 accounting for mitochondrial membrane related pathology. 3-methylglutaconic aciduria is found quite frequently in patients suspected of a metabolic disorder, and mitochondrial dysfunction is indeed a common denominator. It is only a discriminative feature of patients with mutations in AUH, TAZ, SERAC1, OPA3, DNAJC19 TMEM70. These conditions should therefore be referred to as inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature.


Assuntos
Glutaratos/urina , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo dos Aminoácidos/classificação , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Análise Mutacional de DNA , Diagnóstico Diferencial , Humanos , Erros Inatos do Metabolismo/epidemiologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/urina , Países Baixos/epidemiologia , Estudos Retrospectivos , Urinálise/métodos
9.
Biochim Biophys Acta ; 1821(6): 895-907, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22441164

RESUMO

Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2(-/-) mice on a hybrid Swiss Webster×129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2(-/-) mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2(-/-) mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARα. The SREBP-2 pathway is induced in neonatal Pex2(-/-) livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2(-/-) livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARα activation in livers of newborn 129 and SW/129 Pex2(-/-) mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARα-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARα activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2(-/-) mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARα pathway inductions.


Assuntos
Estresse do Retículo Endoplasmático , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Colesterol/sangue , Colesterol/metabolismo , Feminino , Expressão Gênica , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Imuno-Histoquímica , Lipídeos/análise , Lipídeos/sangue , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , PPAR alfa/metabolismo , Fator 2 da Biogênese de Peroxissomos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
10.
Genes Dev ; 26(3): 259-70, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22302938

RESUMO

Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress ß-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPARγ coactivator 1α (Pgc1α) and expression of ß-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1α and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1α regulatory axis, Hif1α negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NAD/metabolismo , Obesidade/patologia , Sirtuína 2/metabolismo , Acetilação , Adipócitos/citologia , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Dieta , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Alinhamento de Sequência , Sirtuína 2/genética , Transativadores/metabolismo , Fatores de Transcrição
11.
J Biol Chem ; 282(38): 27633-9, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17635912

RESUMO

Cytochrome c release from mitochondria is a key event in apoptosis signaling that is regulated by Bcl-2 family proteins. Cleavage of the BH3-only protein Bid by multiple proteases leads to the formation of truncated Bid (tBid), which, in turn, promotes the oligomerization/insertion of Bax into the mitochondrial outer membrane and the resultant release of proteins residing in the intermembrane space. Bax, a monomeric protein in the cytosol, is targeted by a yet unknown mechanism to the mitochondria. Several hypotheses have been put forward to explain this targeting specificity. Using mitochondria isolated from different mutants of the yeast Saccharomyces cerevisiae and recombinant proteins, we have now investigated components of the mitochondrial outer membrane that might be required for tBid/Bax-induced cytochrome c release. Here, we show that the protein translocase of the outer mitochondrial membrane is required for Bax insertion and cytochrome c release.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Citocromos c/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Citosol/metabolismo , Endopeptidase K/metabolismo , Humanos , Imunoprecipitação , Membranas Mitocondriais/metabolismo , Modelos Biológicos , Neurospora crassa/metabolismo , Transporte Proteico
12.
Pacing Clin Electrophysiol ; 29(12): 1319-25, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17201837

RESUMO

BACKGROUND: There is no clear methodology for implantation of an internal cardioverter-defibrillator (ICD) in infants and small children. The aim of this study was to assess efficacy and safety of an extracardiac ICD implantation technique in pediatric patients. PATIENTS AND METHODS: An extracardiac ICD system was implanted in eight patients (age: 0.3-8 years; body weight: 4-29 kg). Under fluoroscopic guidance a defibrillator lead was tunneled subcutaneously starting from the anterior axillar line along the course of the 6th rib until almost reaching the vertebral column. After a partial inferior sternotomy, bipolar steroid-eluting sensing and pacing leads were sutured to the atrial wall (n = 2) and to the anterior wall of the right ventricle (n = 8). The ICD device was implanted as "active can" in the upper abdomen. Sensing, pacing, and defibrillation thresholds (DFTs) as well as impedances were verified intraoperatively and 3 months later, respectively. RESULTS: In seven of eight patients, intraoperative DFT between subcutaneous lead and device was <15 J. In the eighth patient ICD implantation was technically not feasible due to a DFT >20 J. During follow-up (mean 14.5 months) appropriate and effective ICD discharges were noted in two patients. DFT remained stable after 3 months in four of six patients retested. A revision was required in one patient due to lead migration and in another patient due to a lead break. CONCLUSIONS: In infants and small children, extracardiac ICD implantation was technically feasible. Experience and follow-up are still limited. The course of the DFT is unknown, facing further growth of the patients.


Assuntos
Arritmias Cardíacas/terapia , Desfibriladores Implantáveis , Cardioversão Elétrica/instrumentação , Cardioversão Elétrica/métodos , Implantação de Prótese/métodos , Criança , Pré-Escolar , Cardioversão Elétrica/efeitos adversos , Feminino , Humanos , Lactente , Masculino , Implantação de Prótese/efeitos adversos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...