Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Cancer ; 14(16): 3099-3107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859816

RESUMO

Objectives: Black patients have the highest overall incidence rate of early onset colorectal cancer, with many of these patients presenting with more aggressive disease at diagnosis, ultimately leading to decreased overall survival. We aimed to (1) evaluate how race and age affected overall survival in colorectal cancer patients, and (2) determine the different demographic and clinical covariables that may influence survival in younger individuals. Methods: The 2017 National Cancer Database (NCDB) was used to identify all patients that had colorectal cancer between 2004-2017. These patients were then divided into groups according to age (<45 and ≥45 years old) and race (white and black). Overall survival (OS) between white and black groups according to age was compared. Initial testing of survivor functions between groups revealed violations of the proportional hazards assumption. Accordingly, we used parametric maximum likelihood analyses fitting the survivor functions to Weibull distributions. Logistic regression analysis was used to determine univariate and multivariate relationships between the covariates and race for younger subjects. Propensity score matching analysis was also used to control for differences in the demographic or clinical variables between the young black versus white subgroups. Results: Out of 1.4 million potential cases initially identified, 207,823 unique cases were deemed eligible for evaluation based on study criteria. Black patients in the study population were more likely to be female, have medical comorbidities, and come from areas with lower average income and baseline education. OS was lower in older patients of both race categories when compared to the younger cohorts. Among patients older than 45 years, there were no significant differences in proportional hazard of death between black and white patients. However, among those younger than 45 years, younger black patients had significantly increased hazard of death. Regarding disease burden at diagnosis, pathologic characteristics and overall risk of death, there were no significant differences between black and white patients. Conclusions: Overall survival in young black patients with colorectal cancer is significantly reduced when compared to young white patients, even when controlling for demographic and pathologic factors. This suggests that the outcome disparities between black and white patients are complex, and the underlying factors are not well understood.

2.
Sci Adv ; 9(25): eadg7865, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343087

RESUMO

Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions-unbiased toward any specific target. We performed a protein sequence-conditioned sampling on the generative foundation model to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD) and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each target. The most potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization assays. These results establish that a single, broadly deployable generative foundation model for accelerated inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.


Assuntos
Anticorpos Antivirais , COVID-19 , Humanos , Anticorpos Antivirais/química , SARS-CoV-2/metabolismo , Ligação Proteica , Sequência de Aminoácidos
3.
Nanoscale ; 13(47): 19875-19883, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34851350

RESUMO

Viruses are very attractive biomaterials owing to their capability as nanocarriers of genetic material. Efforts have been made to functionalize self-assembling viral protein capsids on their exterior or interior to selectively take up different payloads. PRD1 is a double-stranded DNA bacteriophage comprising an icosahedral protein outer capsid and an inner lipidic vesicle. Here, we report the three-dimensional structure of PRD1 in complex with the antipsychotic drug chlorpromazine (CPZ) by cryo-electron microscopy. We show that the jellyrolls of the viral major capsid protein P3, protruding outwards from the capsid shell, serve as scaffolds for loading heterocyclic CPZ molecules. Additional X-ray studies and molecular dynamics simulations show the binding modes and organization of CPZ molecules when complexed with P3 only and onto the virion surface. Collectively, we provide a proof of concept for the possible use of the lattice-like organisation and the quasi-symmetric morphology of virus capsomers for loading heterocyclic drugs with defined properties.


Assuntos
Bacteriófago PRD1 , Preparações Farmacêuticas , Capsídeo , Proteínas do Capsídeo , Microscopia Crioeletrônica , Vírion
4.
Cell ; 184(16): 4220-4236.e13, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34242578

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/química , COVID-19/patologia , COVID-19/terapia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Imunização Passiva , Testes de Neutralização , Domínios Proteicos/imunologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Soroterapia para COVID-19
5.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33852911

RESUMO

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sítios de Ligação , COVID-19/terapia , COVID-19/virologia , Linhagem Celular , Humanos , Evasão da Resposta Imune , Imunização Passiva , Mutação , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/genética , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas/imunologia , Soroterapia para COVID-19
6.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33756110

RESUMO

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Sítios de Ligação de Anticorpos , Células CHO , Chlorocebus aethiops , Cricetulus , Epitopos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , SARS-CoV-2/imunologia , Células Vero
7.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33743891

RESUMO

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células CHO , COVID-19/epidemiologia , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Pandemias , Ligação Proteica , Relação Estrutura-Atividade , Células Vero
8.
Cell ; 184(9): 2348-2361.e6, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33730597

RESUMO

The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.


Assuntos
Vacinas contra COVID-19/sangue , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Chlorocebus aethiops , Ensaios Clínicos como Assunto , Células HEK293 , Humanos , Imunização Passiva , Modelos Moleculares , Mutação/genética , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Células Vero , Soroterapia para COVID-19
9.
Preprint em Inglês | Fiocruz Preprints | ID: ppf-47927

RESUMO

A pesquisa aponta que o soro de pessoas previamente infectadas por outras cepas é menos potente contra esta variante viral. O problema é observado de forma marcante entre os indivíduos anteriormente infectados pela variante Gama, identificada originalmente em Manaus e atualmente dominante no Brasil, assim como pela variante Beta, detectada pela primeira vez na África do Sul. Nestes casos, a capacidade de neutralizar a cepa Delta é onze vezes menor. O soro de pessoas vacinadas também tem potência reduzida contra a variante originária da Índia, mas os dados apontam que as vacinas continuam efetivas. A capacidade de neutralizar a cepa é 2,5 vezes menor para o imunizante da Pfizer e 4,3 vezes menor para o da Astrazeneca. Os autores do trabalho ressaltam que os índices são semelhantes aos verificados com as variantes Gama e Alfa ­ que emergiram no Brasil e no Reino Unido, respectivamente. Não há evidência de fuga generalizada da neutralização, diferentemente do registrado com a variante Beta ­ com origem na África do Sul.

10.
Commun Biol ; 3: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909201

RESUMO

Enteroviruses cause a range of human and animal diseases, some life-threatening, but there remain no licenced anti-enterovirus drugs. However, a benzene-sulfonamide derivative and related compounds have been shown recently to block infection of a range of enteroviruses by binding the capsid at a positively-charged surface depression conserved across many enteroviruses. It has also been established that glutathione is essential for the assembly of many enteroviruses, interacting with the capsid proteins to facilitate the formation of the pentameric assembly intermediate, although the mechanism is unknown. Here we show, by high resolution structure analyses of enterovirus F3, that reduced glutathione binds to the same interprotomer pocket as the benzene-sulfonamide derivative. Bound glutathione makes strong interactions with adjacent protomers, thereby explaining the underlying biological role of this druggable binding pocket and delineating the pharmacophore for potential antivirals.


Assuntos
Proteínas do Capsídeo/genética , Enterovirus/fisiologia , Glutationa/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Enterovirus/genética , Alinhamento de Sequência
11.
Proc Natl Acad Sci U S A ; 116(50): 25057-25067, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767754

RESUMO

Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes frequent outbreaks of severe neurologic and respiratory disease in humans with high case fatality rates. The 2 glycoproteins displayed on the surface of the virus, NiV-G and NiV-F, mediate host-cell attachment and membrane fusion, respectively, and are targets of the host antibody response. Here, we provide a molecular basis for neutralization of NiV through antibody-mediated targeting of NiV-F. Structural characterization of a neutralizing antibody (nAb) in complex with trimeric prefusion NiV-F reveals an epitope at the membrane-distal domain III (DIII) of the molecule, a region that undergoes substantial refolding during host-cell entry. The epitope of this monoclonal antibody (mAb66) is primarily protein-specific and we observe that glycosylation at the periphery of the interface likely does not inhibit mAb66 binding to NiV-F. Further characterization reveals that a Hendra virus-F-specific nAb (mAb36) and many antibodies in an antihenipavirus-F polyclonal antibody mixture (pAb835) also target this region of the molecule. Integrated with previously reported paramyxovirus F-nAb structures, these data support a model whereby the membrane-distal region of the F protein is targeted by the antibody-mediated immune response across henipaviruses. Notably, our domain-specific sequence analysis reveals no evidence of selective pressure at this region of the molecule, suggestive that functional constraints prevent immune-driven sequence variation. Combined, our data reveal the membrane-distal region of NiV-F as a site of vulnerability on the NiV surface.


Assuntos
Anticorpos Neutralizantes , Vírus Hendra , Proteínas Virais de Fusão , Internalização do Vírus , Anticorpos Monoclonais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Linhagem Celular Tumoral , Glicosilação , Células HEK293 , Vírus Hendra/química , Vírus Hendra/imunologia , Vírus Hendra/metabolismo , Vírus Hendra/fisiologia , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo
12.
Nat Commun ; 10(1): 1456, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926810

RESUMO

Many of the largest known viruses belong to the PRD1-adeno structural lineage characterised by conserved pseudo-hexameric capsomers composed of three copies of a single major capsid protein (MCP). Here, by high-resolution cryo-EM analysis, we show that a class of archaeal viruses possess hetero-hexameric MCPs which mimic the PRD1-adeno lineage trimer. These hetero-hexamers are built from heterodimers and utilise a jigsaw-puzzle system of pegs and holes, and underlying minor capsid proteins, to assemble the capsid laterally from the 5-fold vertices. At these vertices proteins engage inwards with the internal membrane vesicle whilst 2-fold symmetric horn-like structures protrude outwards. The horns are assembled from repeated globular domains attached to a central spine, presumably facilitating multimeric attachment to the cell receptor. Such viruses may represent precursors of the main PRD1-adeno lineage, similarly engaging cell-receptors via 5-fold spikes and using minor proteins to define particle size.


Assuntos
Vírus de Archaea/fisiologia , Montagem de Vírus/fisiologia , Vírus de Archaea/química , Vírus de Archaea/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Modelos Moleculares
13.
Nat Commun ; 10(1): 846, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783086

RESUMO

Lipid membrane fusion is an essential function in many biological processes. Detailed mechanisms of membrane fusion and the protein structures involved have been mainly studied in eukaryotic systems, whereas very little is known about membrane fusion in prokaryotes. Haloarchaeal pleomorphic viruses (HRPVs) have a membrane envelope decorated with spikes that are presumed to be responsible for host attachment and membrane fusion. Here we determine atomic structures of the ectodomains of the 57-kDa spike protein VP5 from two related HRPVs revealing a previously unreported V-shaped fold. By Volta phase plate cryo-electron tomography we show that VP5 is monomeric on the viral surface, and we establish the orientation of the molecules with respect to the viral membrane. We also show that the viral membrane fuses with the host cytoplasmic membrane in a process mediated by VP5. This sheds light on protein structures involved in prokaryotic membrane fusion.


Assuntos
Vírus de Archaea/química , Proteínas de Fusão de Membrana/química , Proteínas do Envelope Viral/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Halorubrum/virologia , Fusão de Membrana , Proteínas de Fusão de Membrana/genética , Proteínas de Fusão de Membrana/metabolismo , Domínios Proteicos , Dobramento de Proteína , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/química
14.
Nat Commun ; 9(1): 4833, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30420666

RESUMO

The original version of this Article contained an error in the spelling of the author Jonah B Sacha, which was incorrectly given as Jonah Sacha. These errors have now been corrected in both the PDF and HTML versions of the Article.

15.
Nat Commun ; 9(1): 3137, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087334

RESUMO

Through major histocompatibility complex class Ia leader sequence-derived (VL9) peptide binding and CD94/NKG2 receptor engagement, human leucocyte antigen E (HLA-E) reports cellular health to NK cells. Previous studies demonstrated a strong bias for VL9 binding by HLA-E, a preference subsequently supported by structural analyses. However, Mycobacteria tuberculosis (Mtb) infection and Rhesus cytomegalovirus-vectored SIV vaccinations revealed contexts where HLA-E and the rhesus homologue, Mamu-E, presented diverse pathogen-derived peptides to CD8+ T cells, respectively. Here we present crystal structures of HLA-E in complex with HIV and Mtb-derived peptides. We show that despite the presence of preferred primary anchor residues, HLA-E-bound peptides can adopt alternative conformations within the peptide binding groove. Furthermore, combined structural and mutagenesis analyses illustrate a greater tolerance for hydrophobic and polar residues in the primary pockets than previously appreciated. Finally, biochemical studies reveal HLA-E peptide binding and exchange characteristics with potential relevance to its alternative antigen presenting function in vivo.


Assuntos
Epitopos , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/imunologia , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Células Matadoras Naturais/imunologia , Macaca mulatta , Mycobacterium tuberculosis , Ligação Proteica , Conformação Proteica , Vírus da Imunodeficiência Símia/imunologia , Antígenos HLA-E
16.
Nat Methods ; 14(8): 805-810, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628129

RESUMO

We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.


Assuntos
Algoritmos , Cristalografia por Raios X/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Vírus/ultraestrutura , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
17.
Nat Commun ; 8(1): 14, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446752

RESUMO

Although several different flaviviruses may cause encephalitis, Japanese encephalitis virus is the most significant, being responsible for thousands of deaths each year in Asia. The structural and molecular basis of this encephalitis is not fully understood. Here, we report the cryo-electron microscopy structure of mature Japanese encephalitis virus at near-atomic resolution, which reveals an unusual "hole" on the surface, surrounded by five encephalitic-specific motifs implicated in receptor binding. Glu138 of E, which is highly conserved in encephalitic flaviviruses, maps onto one of these motifs and is essential for binding to neuroblastoma cells, with the E138K mutation abrogating the neurovirulence and neuroinvasiveness of Japanese encephalitis virus in mice. We also identify structural elements modulating viral stability, notably Gln264 of E, which, when replaced by His264 strengthens a hydrogen-bonding network, leading to a more stable virus. These studies unveil determinants of neurovirulence and stability in Japanese encephalitis virus, opening up new avenues for therapeutic interventions against neurotropic flaviviruses.Japanese encephalitis virus (JEV) is a Flavivirus responsible for thousands of deaths every year for which there are no specific anti-virals. Here, Wang et al. report the cryo-EM structure of mature JEV at near-atomic resolution and identify structural elements that modulate stability and virulence.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Vírus da Encefalite Japonesa (Espécie)/ultraestrutura , Encefalite Japonesa/virologia , Neurônios/virologia , Proteínas do Envelope Viral/química , Animais , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetulus , Microscopia Crioeletrônica , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Encefalite Japonesa/mortalidade , Encefalite Japonesa/patologia , Células Epiteliais/virologia , Expressão Gênica , Humanos , Camundongos Knockout , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Análise de Sobrevida , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Virulência , Replicação Viral
18.
Proc Natl Acad Sci U S A ; 114(4): 770-775, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28074040

RESUMO

Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Hepatite A/imunologia , Animais , Anticorpos Monoclonais/imunologia , Sítios de Ligação/imunologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C
19.
Nat Microbiol ; 1(11): 16150, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27595320

RESUMO

Aichi virus (AiV), an unusual and poorly characterized picornavirus, classified in the genus Kobuvirus, can cause severe gastroenteritis and deaths in children below the age of five years, especially in developing countries1,2. The seroprevalence of AiV is approximately 60% in children under the age of ten years and reaches 90% later in life3,4. There is no available vaccine or effective antiviral treatment. Here, we describe the structure of AiV at 3.7 Å. This first high-resolution structure for a kobuvirus is intermediate between those of the enteroviruses and cardioviruses, with a shallow, narrow depression bounded by the prominent VP0 CD loops (linking the C and D strands of the ß-barrel), replacing the depression known as the canyon, frequently the site of receptor attachment in enteroviruses. VP0 is not cleaved to form VP2 and VP4, so the 'VP2' ß-barrel structure is complemented with a unique extended structure on the inside of the capsid. On the outer surface, a polyproline helix structure, not seen previously in picornaviruses is present at the C terminus of VP1, a position where integrin binding motifs are found in some other picornaviruses. A peptide corresponding to this polyproline motif somewhat attenuates virus infectivity, presumably blocking host-cell attachment. This may guide cellular receptor identification.


Assuntos
Kobuvirus/química , Kobuvirus/ultraestrutura , Receptores Virais/metabolismo , Proteínas Virais/química , Ligação Viral , Antígenos Virais/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Criança , Pré-Escolar , Microscopia Crioeletrônica , Genoma Viral , Humanos , Kobuvirus/genética , Kobuvirus/fisiologia , Ligação Proteica , Conformação Proteica
20.
Sci Adv ; 2(4): e1500980, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152332

RESUMO

The norepinephrine pathway is believed to modulate behavioral and physiological processes, such as mood, overall arousal, and attention. Furthermore, abnormalities in the pathway have been linked to numerous diseases, for example hypertension, depression, anxiety, Parkinson's disease, schizophrenia, Alzheimer's disease, attention deficit hyperactivity disorder, and cocaine dependence. We report the crystal structure of human dopamine ß-hydroxylase, which is the enzyme converting dopamine to norepinephrine. The structure of the DOMON (dopamine ß-monooxygenase N-terminal) domain, also found in >1600 other proteins, reveals a possible metal-binding site and a ligand-binding pocket. The catalytic core structure shows two different conformations: an open active site, as also seen in another member of this enzyme family [the peptidylglycine α-hydroxylating (and α-amidating) monooxygenase], and a closed active site structure, in which the two copper-binding sites are only 4 to 5 Å apart, in what might be a coupled binuclear copper site. The dimerization domain adopts a conformation that bears no resemblance to any other known protein structure. The structure provides new molecular insights into the numerous devastating disorders of both physiological and neurological origins associated with the dopamine system.


Assuntos
Dopamina beta-Hidroxilase/química , Dopamina/metabolismo , Conformação Proteica , Sítios de Ligação , Domínio Catalítico , Cobre/química , Cristalografia por Raios X , Dopamina beta-Hidroxilase/metabolismo , Humanos , Norepinefrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...