Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562702

RESUMO

Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, in particular gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including Alzheimer's disease risk, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.

2.
Elife ; 122023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782317

RESUMO

Triglycerides (TGs) in adipocytes provide the major stores of metabolic energy in the body. Optimal amounts of TG stores are desirable as insufficient capacity to store TG, as in lipodystrophy, or exceeding the capacity for storage, as in obesity, results in metabolic disease. We hypothesized that mice lacking TG storage in adipocytes would result in excess TG storage in cell types other than adipocytes and severe lipotoxicity accompanied by metabolic disease. To test this hypothesis, we selectively deleted both TG synthesis enzymes, DGAT1 and DGAT2, in adipocytes (ADGAT DKO mice). As expected with depleted energy stores, ADGAT DKO mice did not tolerate fasting well and, with prolonged fasting, entered torpor. However, ADGAT DKO mice were unexpectedly otherwise metabolically healthy and did not accumulate TGs ectopically or develop associated metabolic perturbations, even when fed a high-fat diet. The favorable metabolic phenotype resulted from activation of energy expenditure, in part via BAT (brown adipose tissue) activation and beiging of white adipose tissue. Thus, the ADGAT DKO mice provide a fascinating new model to study the coupling of metabolic energy storage to energy expenditure.


Assuntos
Adipócitos , Obesidade , Animais , Camundongos , Tecido Adiposo Marrom , Dieta Hiperlipídica/efeitos adversos , Triglicerídeos
3.
Nat Cell Biol ; 25(8): 1101-1110, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443287

RESUMO

Lipid droplets (LDs) are crucial organelles for energy storage and lipid homeostasis. Autophagy of LDs is an important pathway for their catabolism, but the molecular mechanisms mediating LD degradation by selective autophagy (lipophagy) are unknown. Here we identify spartin as a receptor localizing to LDs and interacting with core autophagy machinery, and we show that spartin is required to deliver LDs to lysosomes for triglyceride mobilization. Mutations in SPART (encoding spartin) lead to Troyer syndrome, a form of complex hereditary spastic paraplegia1. Interfering with spartin function in cultured human neurons or murine brain neurons leads to LD and triglyceride accumulation. Our identification of spartin as a lipophagy receptor, thus, suggests that impaired LD turnover contributes to Troyer syndrome development.


Assuntos
Paraplegia Espástica Hereditária , Camundongos , Humanos , Animais , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Transporte/metabolismo , Autofagia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos/fisiologia
4.
Nat Commun ; 14(1): 3533, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316513

RESUMO

Cells remodel glycerophospholipid acyl chains via the Lands cycle to adjust membrane properties. Membrane-bound O-acyltransferase (MBOAT) 7 acylates lyso-phosphatidylinositol (lyso-PI) with arachidonyl-CoA. MBOAT7 mutations cause brain developmental disorders, and reduced expression is linked to fatty liver disease. In contrast, increased MBOAT7 expression is linked to hepatocellular and renal cancers. The mechanistic basis of MBOAT7 catalysis and substrate selectivity are unknown. Here, we report the structure and a model for the catalytic mechanism of human MBOAT7. Arachidonyl-CoA and lyso-PI access the catalytic center through a twisted tunnel from the cytosol and lumenal sides, respectively. N-terminal residues on the ER lumenal side determine phospholipid headgroup selectivity: swapping them between MBOATs 1, 5, and 7 converts enzyme specificity for different lyso-phospholipids. Finally, the MBOAT7 structure and virtual screening enabled identification of small-molecule inhibitors that may serve as lead compounds for pharmacologic development.


Assuntos
Encefalopatias , Neoplasias Renais , Humanos , Fosfatidilinositóis , Glicerofosfolipídeos , Fosfolipídeos , Catálise , Aciltransferases/genética , Proteínas de Membrana/genética
5.
Curr Opin Struct Biol ; 80: 102606, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150040

RESUMO

Cells store lipids as a reservoir of metabolic energy and membrane component precursors in organelles called lipid droplets (LDs). LD formation occurs in the endoplasmic reticulum (ER) at LD assembly complexes (LDAC), consisting of an oligomeric core of seipin and accessory proteins. LDACs determine the sites of LD formation and are required for this process to occur normally. Seipin oligomers form a cage-like structure in the membrane that may serve to facilitate the phase transition of neutral lipids in the membrane to form an oil droplet within the LDAC. Modeling suggests that, as the LD grows, seipin anchors it to the ER bilayer and conformational shifts of seipin transmembrane segments open the LDAC dome toward the cytoplasm, enabling the emerging LD to egress from the ER.


Assuntos
Gotículas Lipídicas , Proteínas , Gotículas Lipídicas/metabolismo , Proteínas/metabolismo , Retículo Endoplasmático/metabolismo , Lipídeos , Metabolismo dos Lipídeos
6.
Nat Commun ; 14(1): 3100, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248213

RESUMO

Inhibitors of triacylglycerol (TG) synthesis have been developed to treat metabolism-related diseases, but we know little about their mechanisms of action. Here, we report cryo-EM structures of the TG-synthesis enzyme acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a membrane bound O-acyltransferase (MBOAT), in complex with two different inhibitors, T863 and DGAT1IN1. Each inhibitor binds DGAT1's fatty acyl-CoA substrate binding tunnel that opens to the cytoplasmic side of the ER. T863 blocks access to the tunnel entrance, whereas DGAT1IN1 extends further into the enzyme, with an amide group interacting with more deeply buried catalytic residues. A survey of DGAT1 inhibitors revealed that this amide group may serve as a common pharmacophore for inhibition of MBOATs. The inhibitors were minimally active against the related MBOAT acyl-CoA:cholesterol acyltransferase 1 (ACAT1), yet a single-residue mutation sensitized ACAT1 for inhibition. Collectively, our studies provide a structural foundation for developing DGAT1 and other MBOAT inhibitors.


Assuntos
Aciltransferases , Diacilglicerol O-Aciltransferase , Aciltransferases/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Lipogênese , Esterol O-Aciltransferase/química , Triglicerídeos
7.
J Biol Chem ; 299(3): 103022, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805337

RESUMO

The endoplasmic reticulum (ER)-resident protein fat storage-inducing transmembrane protein 2 (FIT2) catalyzes acyl-CoA cleavage in vitro and is required for ER homeostasis and normal lipid storage in cells. The gene encoding FIT2 is essential for the viability of mice and worms. Whether FIT2 acts as an acyl-CoA diphosphatase in vivo and how this activity affects the liver, where the protein was discovered, are unknown. Here, we report that hepatocyte-specific Fitm2 knockout (FIT2-LKO) mice fed a chow diet exhibited elevated acyl-CoA levels, ER stress, and signs of liver injury. These mice also had more triglycerides in their livers than control littermates due, in part, to impaired secretion of triglyceride-rich lipoproteins and reduced capacity for fatty acid oxidation. We found that challenging FIT2-LKO mice with a high-fat diet worsened hepatic ER stress and liver injury but unexpectedly reversed the steatosis phenotype, similar to what is observed in FIT2-deficient cells loaded with fatty acids. Our findings support the model that FIT2 acts as an acyl-CoA diphosphatase in vivo and is crucial for normal hepatocyte function and ER homeostasis in the murine liver.


Assuntos
Fígado Gorduroso , Fígado , Animais , Camundongos , Fígado/metabolismo , Triglicerídeos/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Retículo Endoplasmático/metabolismo , Camundongos Knockout , Homeostase , Proteínas de Membrana/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-36096640

RESUMO

More than 60 years ago, Eugene Kennedy and coworkers elucidated the endoplasmic reticulum (ER)-based pathways of glycerolipid synthesis, including the synthesis of phospholipids and triacylglycerols (TGs). The reactions of the Kennedy pathway were identified by studying the conversion of lipid intermediates and the isolation of biochemical enzymatic activities, but the molecular basis for most of these reactions was unknown. With recent progress in the cell biology, biochemistry, and structural biology in this area, we have a much more mechanistic understanding of this pathway and its reactions. In this review, we provide an overview of molecular aspects of glycerolipid synthesis, focusing on recent insights into the synthesis of TGs. Further, we go beyond the Kennedy pathway to describe the mechanisms for storage of TG in cytosolic lipid droplets and discuss how overwhelming these pathways leads to ER stress and cellular toxicity, as seen in diseases linked to lipid overload and obesity.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Gotículas Lipídicas/metabolismo , Retículo Endoplasmático/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo
9.
Nat Commun ; 13(1): 5924, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207292

RESUMO

Haploinsufficiency of GRN causes frontotemporal dementia (FTD). The GRN locus produces progranulin (PGRN), which is cleaved to lysosomal granulin polypeptides. The function of lysosomal granulins and why their absence causes neurodegeneration are unclear. Here we discover that PGRN-deficient human cells and murine brains, as well as human frontal lobes from GRN-mutation FTD patients have increased levels of gangliosides, glycosphingolipids that contain sialic acid. In these cells and tissues, levels of lysosomal enzymes that catabolize gangliosides were normal, but levels of bis(monoacylglycero)phosphates (BMP), lipids required for ganglioside catabolism, were reduced with PGRN deficiency. Our findings indicate that granulins are required to maintain BMP levels to support ganglioside catabolism, and that PGRN deficiency in lysosomes leads to gangliosidosis. Lysosomal ganglioside accumulation may contribute to neuroinflammation and neurodegeneration susceptibility observed in FTD due to PGRN deficiency and other neurodegenerative diseases.


Assuntos
Demência Frontotemporal , Gangliosidoses , Progranulinas/metabolismo , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Gangliosídeos/metabolismo , Gangliosidoses/metabolismo , Granulinas/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Fosfatos/metabolismo , Progranulinas/genética
10.
Nat Cell Biol ; 24(9): 1364-1377, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36050470

RESUMO

Pathways localizing proteins to their sites of action are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, how proteins, such as metabolic enzymes, target from the endoplasmic reticulum (ER) to cellular lipid droplets (LDs) is poorly understood. Here we identify two distinct pathways for ER-to-LD protein targeting: early targeting at LD formation sites during formation, and late targeting to mature LDs after their formation. Using systematic, unbiased approaches in Drosophila cells, we identified specific membrane-fusion machinery, including regulators, a tether and SNARE proteins, that are required for the late targeting pathway. Components of this fusion machinery localize to LD-ER interfaces and organize at ER exit sites. We identified multiple cargoes for early and late ER-to-LD targeting pathways. Our findings provide a model for how proteins target to LDs from the ER either during LD formation or by protein-catalysed formation of membrane bridges.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Animais , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Transporte Proteico , Proteínas SNARE/metabolismo
11.
Elife ; 112022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583926

RESUMO

Lipid droplets (LDs) are organelles formed in the endoplasmic reticulum (ER) to store triacylglycerol (TG) and sterol esters. The ER protein seipin is key for LD biogenesis. Seipin forms a cage-like structure, with each seipin monomer containing a conserved hydrophobic helix and two transmembrane (TM) segments. How the different parts of seipin function in TG nucleation and LD budding is poorly understood. Here, we utilized molecular dynamics simulations of human seipin, along with cell-based experiments, to study seipin's functions in protein-lipid interactions, lipid diffusion, and LD maturation. An all-atom simulation indicates that seipin TM segment residues and hydrophobic helices residues located in the phospholipid tail region of the bilayer attract TG. Simulating larger, growing LDs with coarse-grained models, we find that the seipin TM segments form a constricted neck structure to facilitate conversion of a flat oil lens into a budding LD. Using cell experiments and simulations, we also show that conserved, positively charged residues at the end of seipin's TM segments affect LD maturation. We propose a model in which seipin TM segments critically function in TG nucleation and LD growth.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Retículo Endoplasmático/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Membranas/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo
12.
Nat Struct Mol Biol ; 29(3): 194-202, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210614

RESUMO

Lipid droplets (LDs) form in the endoplasmic reticulum by phase separation of neutral lipids. This process is facilitated by the seipin protein complex, which consists of a ring of seipin monomers, with a yet unclear function. Here, we report a structure of S. cerevisiae seipin based on cryogenic-electron microscopy and structural modeling data. Seipin forms a decameric, cage-like structure with the lumenal domains forming a stable ring at the cage floor and transmembrane segments forming the cage sides and top. The transmembrane segments interact with adjacent monomers in two distinct, alternating conformations. These conformations result from changes in switch regions, located between the lumenal domains and the transmembrane segments, that are required for seipin function. Our data indicate a model for LD formation in which a closed seipin cage enables triacylglycerol phase separation and subsequently switches to an open conformation to allow LD growth and budding.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Gotículas Lipídicas , Retículo Endoplasmático/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
Dev Cell ; 57(3): 387-397.e4, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134345

RESUMO

Lipid droplets (LDs) are organelles of cellular lipid storage with fundamental roles in energy metabolism and cell membrane homeostasis. There has been an explosion of research into the biology of LDs, in part due to their relevance in diseases of lipid storage, such as atherosclerosis, obesity, type 2 diabetes, and hepatic steatosis. Consequently, there is an increasing need for a resource that combines datasets from systematic analyses of LD biology. Here, we integrate high-confidence, systematically generated human, mouse, and fly data from studies on LDs in the framework of an online platform named the "Lipid Droplet Knowledge Portal" (https://lipiddroplet.org/). This scalable and interactive portal includes comprehensive datasets, across a variety of cell types, for LD biology, including transcriptional profiles of induced lipid storage, organellar proteomics, genome-wide screen phenotypes, and ties to human genetics. This resource is a powerful platform that can be utilized to identify determinants of lipid storage.


Assuntos
Bases de Dados como Assunto , Gotículas Lipídicas/metabolismo , Animais , Ésteres do Colesterol/metabolismo , Mineração de Dados , Genoma , Humanos , Inflamação/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Fosforilação , Interferência de RNA
14.
J Phys Chem B ; 126(2): 453-462, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34990551

RESUMO

Lipid droplets (LDs) are neutral lipid storage organelles surrounded by a phospholipid (PL) monolayer. LD biogenesis from the endoplasmic reticulum is driven by phase separation of neutral lipids, overcoming surface tension and membrane deformation. However, the core biophysics of the initial steps of LD formation remains relatively poorly understood. Here, we use a tunable, phenomenological coarse-grained model to study triacylglycerol (TG) nucleation in a bilayer membrane. We show that PL rigidity has a strong influence on TG lensing and membrane remodeling: when membrane rigidity increases, TG clusters remain more planar with high anisotropy but a minor degree of phase nucleation. This finding is confirmed by advanced sampling simulations that calculate nucleation free energy as a function of the degree of nucleation and anisotropy. We also show that asymmetric tension, controlled by the number of PL molecules on each membrane leaflet, determines the budding direction. A TG lens buds in the direction of the monolayer containing excess PL molecules to allow for better PL coverage of TG, consistent with the reported experiments. Finally, two governing mechanisms of the LD growth, Ostwald ripening and merging, are observed. Taken together, this study characterizes the interplay between two thermodynamic quantities during the initial LD phases, the TG bulk free energy and membrane remodeling energy.


Assuntos
Gotículas Lipídicas , Fosfolipídeos , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Tensão Superficial , Triglicerídeos
15.
Trends Biochem Sci ; 47(1): 39-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583871

RESUMO

Lipid droplets (LDs) are the main organelles for lipid storage, and their surfaces contain unique proteins with diverse functions, including those that facilitate the deposition and mobilization of LD lipids. Among organelles, LDs have an unusual structure with an organic, hydrophobic oil phase covered by a phospholipid monolayer. The unique properties of LD monolayer surfaces require proteins to localize to LDs by distinct mechanisms. Here we review the two pathways known to mediate direct LD protein localization: the CYTOLD pathway mediates protein targeting from the cytosol toLDs, and the ERTOLD pathway functions in protein targeting from the endoplasmic reticulum toLDs. We describe the emerging principles for each targeting pathway in animal cells and highlight open questions in the field.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Animais , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Transporte Proteico , Proteínas/metabolismo
17.
Nature ; 599(7883): 147-151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34616045

RESUMO

Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels1. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle2) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.


Assuntos
Conjuntos de Dados como Assunto , Disseminação de Informação , Microscopia Eletrônica de Varredura , Organelas/ultraestrutura , Animais , Linhagem Celular , Células Cultivadas , Drosophila melanogaster/citologia , Drosophila melanogaster/ultraestrutura , Feminino , Complexo de Golgi/ultraestrutura , Humanos , Interfase , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Varredura/normas , Microtúbulos/ultraestrutura , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Publicação de Acesso Aberto , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/ultraestrutura , Ribossomos/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/ultraestrutura
18.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529166

RESUMO

The coat protein I (COPI) complex mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER). Five siblings with persistent bacterial and viral infections and defective humoral and cellular immunity had a homozygous p.K652E mutation in the γ1 subunit of COPI (γ1-COP). The mutation disrupts COPI binding to the KDEL receptor and impairs the retrieval of KDEL-bearing chaperones from the Golgi to the ER. Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice. This study establishes the role of γ1-COP in the ER retrieval of KDEL-bearing chaperones and thereby the importance of ER homeostasis in adaptive immunity.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Estresse do Retículo Endoplasmático/imunologia , Ativação Linfocitária , Mutação de Sentido Incorreto , Imunodeficiência Combinada Severa/imunologia , Linfócitos T/imunologia , Substituição de Aminoácidos , Animais , Apoptose/genética , Proteína Coatomer/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Estresse do Retículo Endoplasmático/genética , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Humanos , Camundongos , Camundongos Mutantes , Receptores de Peptídeos/genética , Receptores de Peptídeos/imunologia , Imunodeficiência Combinada Severa/genética
19.
Biol Open ; 10(3)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33593792

RESUMO

Phosphatidylethanolamine is an abundant component of most cellular membranes whose physical and chemical properties modulate multiple aspects of organelle membrane dynamics. An evolutionarily ancient mechanism for producing phosphatidylethanolamine is to decarboxylate phosphatidylserine and the enzyme catalyzing this reaction, phosphatidylserine decarboxylase, localizes to the inner membrane of the mitochondrion. We characterize a second form of phosphatidylserine decarboxylase, termed PISD-LD, that is generated by alternative splicing of PISD pre-mRNA and localizes to lipid droplets and to mitochondria. Sub-cellular targeting is controlled by a common segment of PISD-LD that is distinct from the catalytic domain and is regulated by nutritional state. Growth conditions that promote neutral lipid storage in lipid droplets favors targeting to lipid droplets, while targeting to mitochondria is favored by conditions that promote consumption of lipid droplets. Depletion of both forms of phosphatidylserine decarboxylase impairs triacylglycerol synthesis when cells are challenged with free fatty acid, indicating a crucial role phosphatidylserine decarboxylase in neutral lipid storage. The results reveal a previously unappreciated role for phosphatidylserine decarboxylase in lipid droplet biogenesis.


Assuntos
Carboxiliases/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Fosfatidilserinas/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Biomarcadores , Carboxiliases/química , Carboxiliases/genética , Cromatografia em Camada Fina , Ácidos Graxos , Perfilação da Expressão Gênica , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Imagem Molecular , Sinais Direcionadores de Proteínas , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...