Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38558968

RESUMO

Forward genetic screens seek to dissect complex biological systems by systematically perturbing genetic elements and observing the resulting phenotypes. While standard screening methodologies introduce individual perturbations, multiplexing perturbations improves the performance of single-target screens and enables combinatorial screens for the study of genetic interactions. Current tools for multiplexing perturbations are incompatible with pooled screening methodologies that require mRNA-embedded barcodes, including some microscopy and single cell sequencing approaches. Here, we report the development of CROPseq-multi, a CROPseq1-inspired lentiviral system to multiplex Streptococcus pyogenes (Sp) Cas9-based perturbations with mRNA-embedded barcodes. CROPseq-multi has equivalent per-guide activity to CROPseq and low lentiviral recombination frequencies. CROPseq-multi is compatible with enrichment screening methodologies and optical pooled screens, and is extensible to screens with single-cell sequencing readouts. For optical pooled screens, an optimized and multiplexed in situ detection protocol improves barcode detection efficiency 10-fold, enables detection of recombination events, and increases decoding efficiency 3-fold relative to CROPseq. CROPseq-multi is a widely applicable multiplexing solution for diverse SpCas9-based genetic screening approaches.

2.
Nat Biotechnol ; 41(3): 409-416, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36203014

RESUMO

Methods for in vitro DNA cleavage and molecular cloning remain unable to precisely cleave DNA directly adjacent to bases of interest. Restriction enzymes (REs) must bind specific motifs, whereas wild-type CRISPR-Cas9 or CRISPR-Cas12 nucleases require protospacer adjacent motifs (PAMs). Here we explore the utility of our previously reported near-PAMless SpCas9 variant, named SpRY, to serve as a universal DNA cleavage tool for various cloning applications. By performing SpRY DNA digests (SpRYgests) using more than 130 guide RNAs (gRNAs) sampling a wide diversity of PAMs, we discovered that SpRY is PAMless in vitro and can cleave DNA at practically any sequence, including sites refractory to cleavage with wild-type SpCas9. We illustrate the versatility and effectiveness of SpRYgests to improve the precision of several cloning workflows, including those not possible with REs or canonical CRISPR nucleases. We also optimize a rapid and simple one-pot gRNA synthesis protocol to streamline SpRYgest implementation. Together, SpRYgests can improve various DNA engineering applications that benefit from precise DNA breaks.


Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , Sistemas CRISPR-Cas/genética , DNA/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas
3.
Mol Syst Biol ; 18(11): e10768, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36366905

RESUMO

Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biological systems and the structured dynamic responses of these systems to perturbations. Genetic screens with deep single-cell profiling via image features or gene expression programs have the capacity to show how biological systems work in detail by cataloging many cellular phenotypes with one experimental assay. Microscopy-based cellular profiling provides information complementary to next-generation sequencing (NGS) profiling and has only recently become compatible with large-scale genetic screens. Optical screening now offers the scale needed for systematic characterization and is poised for further scale-up. We discuss how these methodologies, together with emerging technologies for genetic perturbation and microscopy-based multiplexed molecular phenotyping, are powering new approaches to reveal genotype-phenotype relationships.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Microscopia
4.
Nat Protoc ; 16(3): 1511-1547, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547443

RESUMO

The continued expansion of the genome-editing toolbox necessitates methods to characterize important properties of CRISPR-Cas enzymes. One such property is the requirement for Cas proteins to recognize a protospacer-adjacent motif (PAM) in DNA target sites. The high-throughput PAM determination assay (HT-PAMDA) is a method that enables scalable characterization of the PAM preferences of different Cas proteins. Here, we provide a step-by-step protocol for the method, discuss experimental design considerations, and highlight how the method can be used to profile naturally occurring CRISPR-Cas9 enzymes, engineered derivatives with improved properties, orthologs of different classes (e.g., Cas12a), and even different platforms (e.g., base editors). A distinguishing feature of HT-PAMDA is that the enzymes are expressed in a cell type or organism of interest (e.g., mammalian cells), permitting scalable characterization and comparison of hundreds of enzymes in a relevant setting. HT-PAMDA does not require specialized equipment or expertise and is cost effective for multiplexed characterization of many enzymes. The protocol enables comprehensive PAM characterization of dozens or hundreds of Cas enzymes in parallel in <2 weeks.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/genética , Humanos , Motivos de Nucleotídeos/genética , RNA Guia de Cinetoplastídeos/genética , Projetos de Pesquisa
6.
Science ; 368(6488): 290-296, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32217751

RESUMO

Manipulation of DNA by CRISPR-Cas enzymes requires the recognition of a protospacer-adjacent motif (PAM), limiting target site recognition to a subset of sequences. To remove this constraint, we engineered variants of Streptococcus pyogenes Cas9 (SpCas9) to eliminate the NGG PAM requirement. We developed a variant named SpG that is capable of targeting an expanded set of NGN PAMs, and we further optimized this enzyme to develop a near-PAMless SpCas9 variant named SpRY (NRN and to a lesser extent NYN PAMs). SpRY nuclease and base-editor variants can target almost all PAMs, exhibiting robust activities on a wide range of sites with NRN PAMs in human cells and lower but substantial activity on those with NYN PAMs. Using SpG and SpRY, we generated previously inaccessible disease-relevant genetic variants, supporting the utility of high-resolution targeting across genome editing applications.


Assuntos
Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Marcação de Genes/métodos , Predisposição Genética para Doença , Células HEK293 , Humanos , Mutagênese , Domínios Proteicos , Especificidade por Substrato
7.
Nat Biotechnol ; 37(3): 276-282, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742127

RESUMO

Broad use of CRISPR-Cas12a (formerly Cpf1) nucleases1 has been hindered by the requirement for an extended TTTV protospacer adjacent motif (PAM)2. To address this limitation, we engineered an enhanced Acidaminococcus sp. Cas12a variant (enAsCas12a) that has a substantially expanded targeting range, enabling targeting of many previously inaccessible PAMs. On average, enAsCas12a exhibits a twofold higher genome editing activity on sites with canonical TTTV PAMs compared to wild-type AsCas12a, and we successfully grafted a subset of mutations from enAsCas12a onto other previously described AsCas12a variants3 to enhance their activities. enAsCas12a improves the efficiency of multiplex gene editing, endogenous gene activation and C-to-T base editing, and we engineered a high-fidelity version of enAsCas12a (enAsCas12a-HF1) to reduce off-target effects. Both enAsCas12a and enAsCas12a-HF1 function in HEK293T and primary human T cells when delivered as ribonucleoprotein (RNP) complexes. Collectively, enAsCas12a provides an optimized version of Cas12a that should enable wider application of Cas12a enzymes for gene and epigenetic editing.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Edição de Genes , Ribonucleoproteínas/genética , Acidaminococcus/enzimologia , Epigênese Genética/genética , Células HEK293 , Humanos , Mutação , Linfócitos T/metabolismo
8.
Science ; 362(6411): 240-242, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30190308

RESUMO

Bacterial CRISPR-Cas systems protect their host from bacteriophages and other mobile genetic elements. Mobile elements, in turn, encode various anti-CRISPR (Acr) proteins to inhibit the immune function of CRISPR-Cas. To date, Acr proteins have been discovered for type I (subtypes I-D, I-E, and I-F) and type II (II-A and II-C) but not other CRISPR systems. Here, we report the discovery of 12 acr genes, including inhibitors of type V-A and I-C CRISPR systems. AcrVA1 inhibits a broad spectrum of Cas12a (Cpf1) orthologs-including MbCas12a, Mb3Cas12a, AsCas12a, and LbCas12a-when assayed in human cells. The acr genes reported here provide useful biotechnological tools and mark the discovery of acr loci in many bacteria and phages.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Sistemas CRISPR-Cas , Endonucleases/antagonistas & inibidores , Edição de Genes , Moraxella/genética , Pseudomonas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...