Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 196(2): 455-468, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33959812

RESUMO

Soil fauna communities are major drivers of many forest ecosystem processes. Tree species diversity and composition shape soil fauna communities, but their relationships are poorly understood, notably whether or not soil fauna diversity depends on tree species diversity. Here, we characterized soil macrofauna communities from forests composed of either one or three tree species, located in four different climate zones and growing on different soil types. Using multivariate analysis and model averaging we investigated the relative importance of tree species richness, tree functional type (deciduous vs. evergreen), litter quality, microhabitat and microclimatic characteristics as drivers of soil macrofauna community composition and structure. We found that macrofauna communities in mixed forest stands were represented by a higher number of broad taxonomic groups that were more diverse and more evenly represented. We also observed a switch from earthworm-dominated to predator-dominated communities with increasing evergreen proportion in forest stands, which we interpreted as a result of a lower litter quality and a higher forest floor mass. Finally, canopy openness was positively related to detritivore abundance and biomass, leading to higher predator species richness and diversity probably through trophic cascade effects. Interestingly, considering different levels of taxonomic resolution in the analyses highlighted different facets of macrofauna response to tree species richness, likely a result of both different ecological niche range and methodological constraints. Overall, our study supports the positive effects of tree species richness on macrofauna diversity and abundance through multiple changes in resource quality and availability, microhabitat, and microclimate modifications.


Assuntos
Solo , Árvores , Biodiversidade , Ecossistema , Florestas
2.
Environ Microbiol ; 23(4): 1889-1906, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32959469

RESUMO

Current studies show that multispecies forests are beneficial regarding biodiversity and ecosystem functionality. However, there are only little efforts to understand the ecological mechanisms behind these advantages of multispecies forests. Bacteria are among the key plant growth-promoting microorganisms that support tree growth and fitness. Thus, we investigated links between bacterial communities, their functionality and root trait dispersion within four major European forest types comprising multispecies and monospecific plots. Bacterial diversity revealed no major changes across the root functional dispersion gradient. In contrast, predicted gene profiles linked to plant growth activities suggest an increasing bacterial functionality from monospecific to multispecies forest. In multispecies forest plots, the bacterial functionality linked to plant growth activities declined with the increasing functional dispersion of the roots. Our findings indicate that enriched abundant bacterial operational taxonomic units are decoupled from bacterial functionality. We also found direct effects of tree species identity on bacterial community composition but no significant relations with root functional dispersion. Additionally, bacterial network analyses indicated that multispecies forests have a higher complexity in their bacterial communities, which points towards more stable forest systems with greater functionality. We identified a potential of root dispersion to facilitate bacterial interactions and consequently, plant growth activities.


Assuntos
Ecossistema , Solo , Bactérias/genética , Biodiversidade , Árvores
3.
Mol Ecol ; 30(2): 572-591, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226697

RESUMO

At the global scale, most forest research on biodiversity focuses on aboveground organisms. However, understanding the structural associations between aboveground and belowground communities provides relevant information about important functions linked to biogeochemical cycles. Microorganisms such as soil fungi are known to be closely coupled to the dominant tree vegetation, and we hypothesize that tree traits affect fungal guilds and soil functionality in multiple ways. By analysing fungal diversity of 64 plots from four European forest types using Illumina DNA sequencing, we show that soil fungal communities respond to tree community traits rather than to tree species diversity. To explain changes in fungal community structure and measured soil enzymatic activities, we used a trait-based ecological approach and community-weighted means of tree traits to define 'fast' (acquisitive) versus 'slow' (conservative) tree communities. We found specific tree trait effects on different soil fungal guilds and soil enzymatic activities: tree traits associated with litter and absorptive roots correlated with fungal, especially pathogen diversity, and influenced community composition of soil fungi. Relative abundance of the symbiotrophic and saprotrophic guilds mirrored the litter quality, while the root traits of fast tree communities enhanced symbiotrophic abundance. We found that forest types of higher latitudes, which are dominated by fast tree communities, correlated with high carbon-cycling enzymatic activities. In contrast, Mediterranean forests with slow tree communities showed high enzymatic activities related to nitrogen and phosphorous. Our findings highlight that tree trait effects of either 'fast' or 'slow' tree communities drive different fungal guilds and influence biogeochemical cycles.


Assuntos
Solo , Árvores , Florestas , Fungos/genética , Microbiologia do Solo , Árvores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA