Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38726826

RESUMO

Lung cancer (LC) is the leading cause of cancer-associated deaths worldwide, among which non-small-cell lung cancer (NSCLC) accounts for 80%. Stromal cell-derived factor-1 (SDF-1) inhibition results in a significant depletion of NSCLC metastasis. Additionally, SDF-1 is the only natural chemokine known to bind and activate the receptor CXCR4. Thus, we attempted to clarify the molecular mechanism of SDF-1 underlying NSCLC progression. Transwell migration, adhesion, and G-LISA assays were used to assess megakaryocytic chemotaxis in vitro and in vivo in terms of megakaryocytic migration, adherence, and RhoA activation, respectively. Western blotting was used to assess PI3K/Akt-associated protein abundances in MEG-01 cells and primary megakaryocytes under the indicated treatment. A hematology analyzer and flow cytometry were used to assess platelet counts in peripheral blood and newly formed platelet counts in Lewis LC mice under different treatments. Immunochemistry and flow cytometry were used to measure CD41+ megakaryocyte numbers in Lewis LC mouse tissue under different treatments. ELISA was used to measure serum TPO levels, and H&E staining was used to detect NSCLC metastasis.SDF-1 receptor knockdown suppressed megakaryocytic chemotaxis in Lewis LC mice. SDF-1 receptor inhibition suppressed megakaryocytic chemotaxis via the PI3K/Akt pathway. SDF-1 receptor knockdown suppressed CD41+ megakaryocyte numbers in vivo through PI3K/Akt signaling. SDF-1 receptor inhibition suppressed CD41+ megakaryocytes to hinder NSCLC metastasis. SDF-1 facilitates NSCLC metastasis by enhancing the chemoattraction of megakaryocytes via the PI3K/Akt signaling pathway, which may provide a potential new direction for seeking therapeutic plans for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CXCL12 , Quimiotaxia , Neoplasias Pulmonares , Megacariócitos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores CXCR4 , Transdução de Sinais , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Megacariócitos/metabolismo , Megacariócitos/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Camundongos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Linhagem Celular Tumoral , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Metástase Neoplásica , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
2.
J Thorac Dis ; 15(4): 1823-1837, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37197549

RESUMO

Background: In the tumor immune microenvironment, the contribution of innate and adaptive immune cells to tumor progression has been consistently demonstrated. However, reliable prognostic biomarkers for lung adenocarcinoma (LUAD) have not yet been identified. We thus developed and validated an immunologic long noncoding RNA (lncRNA) signature (ILLS) to facilitate the classification of patients with high and low risk and provide potential "made-to-measure" treatment choices. Methods: The LUAD data sets were obtained and processed from public databases of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The abundance of immune infiltration and its related pathways were calculated through consensus clustering, weighted gene coexpression network analysis (WGCNA), and an integrated ImmLnc to identify immune-related lncRNAs and extract immune-related prognostic lncRNAs. Based on the integrative procedure, the best algorithm composition was least absolute shrinkage and selection operator (LASSO) and stepwise Cox regression in both directions to develop the ILLS in the TCGA-LUAD data set and validate the predictive power of 4 independent data sets, GSE31210, GSE37745, GSE30219, and GSE50081 through survival analysis, receiver operating characteristic (ROC) analysis, and multivariate Cox regression. The concordance index (C-index) analysis was transversely compared with 49 published signatures in the above 5 data sets to further confirm its stability and superiority. Finally, drug sensitivity analysis was conducted to explore potential therapeutic agents. Results: Patients from the high-risk groups consistently had worse overall survival (OS) compared to the low-risk groups. ILLS proved to be an independent prognostic factor with favorable sensitivity and specificity. Among the 4 GEO data sets, compared to those reported in the other literature, ILLS maintained stable prediction ability and was more suitable as a consensus risk-stratification tool. However, The Cancer Immunome Atlas and IMvigor210 data sets demonstrated practical utility in recognizing target populations with effective immunotherapy, while the high-risk group exhibited potential targets for certain chemotherapy drugs, such as carmustine, etoposide, arsenic trioxide, and alectinib. Conclusions: ILLS demonstrated superior and stable prognostic prediction ability and thus has potential as a tool for assisting in risk classification and clinical decision-making in patients with LUAD.

3.
J Med Chem ; 60(10): 4369-4385, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28430437

RESUMO

The hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile. These efforts led to the discovery of BMS-929075 (37), which maintained ligand efficiency relative to early leads, demonstrated efficacy in a triple combination regimen in HCV replicon cells, and exhibited consistently high oral bioavailability and pharmacokinetic parameters across preclinical animal species. The human PK properties from the Phase I clinical studies of 37 were better than anticipated and suggest promising potential for QD administration.


Assuntos
Antivirais/farmacologia , Antivirais/farmacocinética , Benzofuranos/farmacologia , Benzofuranos/farmacocinética , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Animais , Antivirais/química , Benzofuranos/química , Cães , Descoberta de Drogas , Haplorrinos , Hepatite C/virologia , Humanos , Masculino , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
4.
Bioorg Med Chem Lett ; 27(2): 295-298, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27908764

RESUMO

Alkoxyanthranilic acid derivatives have been identified to inhibit HCV NS5B polymerase, binding in an allosteric site located at the convergence of the palm and thumb regions. Information from co-crystal structures guided the structural design strategy. Ultimately, two independent structural modifications led to a similar shift in binding mode that when combined led to a synergistic improvement in potency and the identification of inhibitors with sub-micromolar HCV NS5B binding potency.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , ortoaminobenzoatos/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , ortoaminobenzoatos/síntese química , ortoaminobenzoatos/química
5.
Bioconjug Chem ; 27(5): 1276-84, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27098672

RESUMO

A disulfide-bridged peptide drug development candidate contained two oligopeptide chains with 11 and 12 natural amino acids joined by a disulfide bond at the N-terminal end. An efficient biotechnology based process for the production of the disulfide-bridged peptide was developed. Initially, the two individual oligopeptide chains were prepared separately by designing different fusion proteins and expressing them in recombinant E. coli. Enzymatic or chemical cleavage of the two fusion proteins provided the two individual oligopeptide chains which could be conjugated via disulfide bond by conventional chemical reaction to the disulfide-bridged peptide. A novel heterodimeric system to bring the two oligopeptide chains closer and induce disulfide bond formation was designed by taking advantage of the self-assembly of a leucine zipper system. The heterodimeric approach involved designing fusion proteins with the acidic and basic components of the leucine zipper, additional amino acids to optimize interaction between the individual chains, specific cleavage sites, specific tag to ensure separation, and two individual oligopeptide chains. Computer modeling was used to identify the nature and number of amino acid residue to be inserted between the leucine zipper and oligopeptides for optimum interaction. Cloning and expression in rec E. coli, fermentation, followed by cell disruption resulted in the formation of heterodimeric protein with the interchain disulfide bond. Separation of the desired heterodimeric protein, followed by specific cleavage at methionine by cyanogen bromide provided the disulfide-bridged peptide.


Assuntos
Biotecnologia , Dissulfetos/química , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Modelos Moleculares , Peptídeos/genética , Multimerização Proteica , Estrutura Quaternária de Proteína
6.
Bioorg Med Chem Lett ; 21(8): 2212-5, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21441029

RESUMO

Structure based rationales for the activities of potent N-benzyl-4-heteroaryl-1-(phenylsulfonyl)piperazine-2-carboxamide inhibitors of the hepatitis C viral polymerase are described herein. These compounds bind to the hepatitis C virus non-structural protein 5B (NS5B), and co-crystal structures of select examples from this series with NS5B are reported. Comparison of co-crystal structures of a potent analog with both NS5B genotype 1a and genotype 1b provides a possible explanation for the genotype-selectivity observed with this compound class and suggests opportunities for the further optimization of the series.


Assuntos
Amidas/química , Antivirais/química , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Amidas/síntese química , Amidas/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...