Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(50): 47938-47953, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144124

RESUMO

The Ediacaran Doushantuo phosphate deposit in Kaiyang, Guizhou Province, China, contains thick phosphate ores. Most of the ores are reconstituted phosphorite, and there have been few studies of the primary phosphorites, which has led to controversy regarding the origins and nature of mineralization of these phosphate-rich deposits. We identified high-grade primary phosphorites in the Kaiyang area and undertook a stratigraphic, petrological, sedimentological, geochemical, and isotopic study of these rocks. Moving up-section, the Longshui phosphate ore deposit comprises granular, micritic, stromatolitic, honeycomb, and sandy phosphorites. The first four types of phosphorite contain abundant biological structures, such as spherical, lobe-like, and amorphous forms. These are mainly fossils of benthic multicellular red algae, along with other types of algae. These fossils comprise >70% of the phosphorites, indicating that these are protist phosphorites. The ores are massive, unstratified, and contain numerous layered cavity structures, indicating that the ore bed was originally a reef. The phosphorites have P2O5 contents of 38.6-40.2 wt %, with an average of 38.9 wt %. The Al2O3 + TiO2 values are 0.02-0.44 wt %. The δ18O values of the samples vary from 13.76 to 16.57‰, with an average of 14.60‰, and δ13C values range from -15.789 to -8.697‰, with an average of -13.133‰. The samples exhibit rare-earth element patterns that are enriched with middle rare-earth elements and have strongly negative Ce anomalies. The geochemical features show that the reef was deposited in clear and oxidized waters. The discovery of this high-grade protist phosphorite shows that the involvement of algae was key to the formation of the Kaiyang phosphate-rich deposit.

2.
Environ Geochem Health ; 45(7): 5467-5480, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37099043

RESUMO

Antimony (Sb) and arsenic (As) co-contamination occurs in Sb smelting areas and is harmful to the surrounding ecological environment. The purpose of this study is to explore the spatial distribution characteristics of Sb and As in abandoned Sb smelting area and carry out risk assessments. Soil samples were collected from the smelting area profile and background points, and groundwater samples were also collected. Samples from two geological background sections were collected to understand the geological background characteristics of Sb and As. The spatial distribution was drawn via the inverse distance weighted interpolation method. The hazard assessment was carried out by the geo-accumulation index and potential ecological hazard methods. The results showed that special high geological background value of Sb and As in study area. Sb and As co-contamination is one of the characters in soil. And the contents of Sb and As decrease as depth increases, reflecting the weak migration capacity. The spatial distribution of Sb and As is affected by slag distribution and rainfall leaching. The Sb content in groundwater was higher in the wet and normal seasons than in the dry season, slag leaching may be one of the elements. The potential ecological hazards of Sb and As are high and considerable, respectively. In abandoned smelting area with high geological background values, it is necessary to focus on the pollution abatement and protection of ecological health.


Assuntos
Arsênio , Poluentes do Solo , Antimônio/análise , Arsênio/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Solo , China , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA