Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
J Cell Mol Med ; 28(8): e18306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613357

RESUMO

Topical patch delivery of deferoxamine (DFO) has been studied as a treatment for this fibrotic transformation in irradiated tissue. Efficacy of a novel cream formulation of DFO was studied as a RIF therapeutic in unwounded and excisionally wounded irradiated skin. C57BL/6J mice underwent 30 Gy of radiation to the dorsum followed by 4 weeks of recovery. In a first experiment, mice were separated into six conditions: DFO 50 mg cream (D50), DFO 100 mg cream (D100), soluble DFO injections (DI), DFO 1 mg patch (DP), control cream (Vehicle), and irradiated untreated skin (IR). In a second experiment, excisional wounds were created on the irradiated dorsum of mice and then divided into four treatment groups: DFO 100 mg Cream (W-D100), DFO 1 mg patch (W-DP), control cream (W-Vehicle), and irradiated untreated wounds (W-IR). Laser Doppler perfusion scans, biomechanical testing, and histological analysis were performed. In irradiated skin, D100 improved perfusion compared to D50 or DP. Both D100 and DP enhanced dermal characteristics, including thickness, collagen density and 8-isoprostane staining compared to untreated irradiated skin. D100 outperformed DP in CD31 staining, indicating higher vascular density. Extracellular matrix features of D100 and DP resembled normal skin more closely than DI or control. In radiated excisional wounds, D100 facilitated faster wound healing and increased perfusion compared to DP. The 100 mg DFO cream formulation rescued RIF of unwounded irradiated skin and improved excisional wound healing in murine skin relative to patch delivery of DFO.


Assuntos
Desferroxamina , Síndrome da Fibrose por Radiação , Camundongos , Animais , Camundongos Endogâmicos C57BL , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Pele , Perfusão
2.
Res Sq ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464040

RESUMO

Skin fibrosis is a clinical problem with devastating impacts but limited treatment options. In the setting of diabetes, insulin administration often causes local dermal fibrosis, leading to a range of clinical sequelae including impeded insulin absorption. Mechanical forces are important drivers of fibrosis and, clinically, physical tension offloading at the skin level using an elastomeric patch significantly reduces wound scarring. However, it is not known whether tension offloading could similarly prevent skin fibrosis in the setting of pro-fibrotic injections. Here, we develop a porcine model using repeated local injections of bleomycin to recapitulate key features of insulin-induced skin fibrosis. Using histologic, tissue ultrastructural, and biomechanical analyses, we show that application of a tension-offloading patch both prevents and rescues existing skin fibrosis from bleomycin injections. By applying single-cell transcriptomic analysis, we find that the fibrotic response to bleomycin involves shifts in myeloid cell dynamics from favoring putatively pro-regenerative to pro-fibrotic myeloid subtypes; in a mechanomodulatory in vitro platform, we show that these shifts are mechanically driven and reversed by exogenous IL4. Finally, using a human foreskin xenograft model, we show that IL4 treatment mitigates bleomycin-induced dermal fibrosis. Overall, this study highlights that skin tension offloading, using an FDA cleared, commercially available patch, could have significant potential clinical benefit for the millions of patients dependent on insulin.

3.
J Reconstr Microsurg ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38382637

RESUMO

BACKGROUND: With the growing relevance of artificial intelligence (AI)-based patient-facing information, microsurgical-specific online information provided by professional organizations was compared with that of ChatGPT (Chat Generative Pre-Trained Transformer) and assessed for accuracy, comprehensiveness, clarity, and readability. METHODS: Six plastic and reconstructive surgeons blindly assessed responses to 10 microsurgery-related medical questions written either by the American Society of Reconstructive Microsurgery (ASRM) or ChatGPT based on accuracy, comprehensiveness, and clarity. Surgeons were asked to choose which source provided the overall highest-quality microsurgical patient-facing information. Additionally, 30 individuals with no medical background (ages: 18-81, µ = 49.8) were asked to determine a preference when blindly comparing materials. Readability scores were calculated, and all numerical scores were analyzed using the following six reliability formulas: Flesch-Kincaid Grade Level, Flesch-Kincaid Readability Ease, Gunning Fog Index, Simple Measure of Gobbledygook Index, Coleman-Liau Index, Linsear Write Formula, and Automated Readability Index. Statistical analysis of microsurgical-specific online sources was conducted utilizing paired t-tests. RESULTS: Statistically significant differences in comprehensiveness and clarity were seen in favor of ChatGPT. Surgeons, 70.7% of the time, blindly choose ChatGPT as the source that overall provided the highest-quality microsurgical patient-facing information. Nonmedical individuals 55.9% of the time selected AI-generated microsurgical materials as well. Neither ChatGPT nor ASRM-generated materials were found to contain inaccuracies. Readability scores for both ChatGPT and ASRM materials were found to exceed recommended levels for patient proficiency across six readability formulas, with AI-based material scored as more complex. CONCLUSION: AI-generated patient-facing materials were preferred by surgeons in terms of comprehensiveness and clarity when blindly compared with online material provided by ASRM. Studied AI-generated material was not found to contain inaccuracies. Additionally, surgeons and nonmedical individuals consistently indicated an overall preference for AI-generated material. A readability analysis suggested that both materials sourced from ChatGPT and ASRM surpassed recommended reading levels across six readability scores.

4.
J Transl Med ; 22(1): 68, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233920

RESUMO

Local skin flaps are frequently employed for wound closure to address surgical, traumatic, congenital, or oncologic defects. (1) Despite their clinical utility, skin flaps may fail due to inadequate perfusion, ischemia/reperfusion injury (IRI), excessive cell death, and associated inflammatory response. (2) All of these factors contribute to skin flap necrosis in 10-15% of cases and represent a significant surgical challenge. (3, 4) Once flap necrosis occurs, it may require additional surgeries to remove the entire flap or repair the damage and secondary treatments for infection and disfiguration, which can be costly and painful. (5) In addition to employing appropriate surgical techniques and identifying healthy, well-vascularized tissue to mitigate the occurrence of these complications, there is growing interest in exploring cell-based and pharmacologic augmentation options. (6) These agents typically focus on preventing thrombosis and increasing vasodilation and angiogenesis while reducing inflammation and oxidative stress. Agents that modulate cell death pathways such as apoptosis and autophagy have also been investigated. (7) Implementation of drugs and cell lines with potentially beneficial properties have been proposed through various delivery techniques including systemic treatment, direct wound bed or flap injection, and topical application. This review summarizes pharmacologic- and cell-based interventions to augment skin flap viability in animal models, and discusses both translatability challenges facing these therapies and future directions in the field of skin flap augmentation.


Assuntos
Traumatismo por Reperfusão , Retalhos Cirúrgicos , Animais , Pele , Complicações Pós-Operatórias , Modelos Animais de Doenças , Necrose/tratamento farmacológico
5.
Plast Reconstr Surg ; 153(1): 121-128, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988644

RESUMO

BACKGROUND: A significant gap exists in the translatability of small-animal models to human subjects. One important factor is poor laboratory models involving human tissue. Thus, the authors have created a viable postnatal human skin xenograft model using athymic mice. METHODS: Discarded human foreskins were collected following circumcision. All subcutaneous tissue was removed from these samples sterilely. Host CD-1 nude mice were then anesthetized, and dorsal skin was sterilized. A 1.2-cm-diameter, full-thickness section of dorsal skin was excised. The foreskin sample was then placed into the full-thickness defect in the host mice and sutured into place. Xenografts underwent dermal wounding using a 4-mm punch biopsy after engraftment. Xenografts were monitored for 14 days after wounding and then harvested. RESULTS: At 14 days postoperatively, all mice survived the procedure. Grossly, the xenograft wounds showed formation of a human scar at postoperative day 14. Hematoxylin and eosin and Masson trichome staining confirmed scar formation in the wounded human skin. Using a novel artificial intelligence algorithm using picrosirius red staining, scar formation was confirmed in human wounded skin compared with the unwounded skin. Histologically, CD31 + immunostaining confirmed vascularization of the xenograft. The xenograft exclusively showed human collagen type I, CD26 + , and human nuclear antigen in the human scar without any staining of these human markers in the murine skin. CONCLUSION: The proposed model demonstrates wound healing to be a local response from tissue resident human fibroblasts and allows for reproducible evaluation of human skin wound repair in a preclinical model. CLINICAL RELEVANCE STATEMENT: Radiation-induced fibrosis is a widely prevalent clinical phenomenon without a well-defined treatment at this time. This study will help establish a small-animal model to better understand and develop novel therapeutics to treat irradiated human skin.


Assuntos
Cicatriz , Pele , Cicatrização , Animais , Humanos , Masculino , Camundongos , Inteligência Artificial , Cicatriz/patologia , Modelos Animais de Doenças , Xenoenxertos , Camundongos Nus , Pele/patologia , Cicatrização/fisiologia
6.
J Plast Reconstr Aesthet Surg ; 88: 344-351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064913

RESUMO

Maternal cigarette use is associated with the fetal development of orofacial clefts. Air pollution should be investigated for similar causation. We hypothesize that the incidence of non-syndromic cleft lip with or without palate (NSCLP) and non-syndromic cleft palate (NSCP) would be positively correlated with air pollution concentration. METHODS: The incidence of NSCLP and NSCP per 1000 live births from 2016 to 2020 was extracted from the Centers for Disease Control and Prevention Vital Statistics Database and merged with national reports on air pollution using the Environmental Protection Agency Air Quality Systems annual data. The most commonly reported pollutants were analyzed including benzene, sulfur dioxide (SO2), particulate matter (PM) 2.5, PM 10, ozone (O3), and carbon monoxide (CO). Multivariable negative binomial and Poisson log-linear regression models evaluated the incidence of NSCLP and NSCP as a function of the pollutants, adjusting for race. All p-values are reported with Bonferroni correction. RESULTS: The median NSCLP incidence was 0.22/1000 births, and isolated NSCP incidence was 0.18/1000 births. For NSCLP, SO2 had a coefficient estimate (CE) of 0.60 (95% CI [0.23, 0.98], p < 0.007) and PM 2.5 had a CE of 0.20 (95% CI [0.10, 0.31], p < 0.005). Among isolated NSCP, no pollutants were found to be significantly associated. CONCLUSION: SO2 and PM 2.5 were significantly correlated with increased incidence of NSCLP. The American people and perinatal practitioners should be aware of the connection to allow for risk reduction and in utero screening.


Assuntos
Poluição do Ar , Fenda Labial , Fissura Palatina , Poluentes Ambientais , Gravidez , Feminino , Humanos , Fenda Labial/epidemiologia , Fenda Labial/etiologia , Fissura Palatina/epidemiologia , Fissura Palatina/etiologia , Incidência , Estudos de Casos e Controles , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise
7.
Ann Plast Surg ; 92(2): 181-185, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962260

RESUMO

ABSTRACT: The number of cancer survivors continues to increase because of advances in therapeutic modalities. Along with surgery and chemotherapy, radiotherapy is a commonly used treatment modality in roughly half of all cancer patients. It is particularly helpful in the oncologic treatment of patients with breast, head and neck, and prostate malignancies. Unfortunately, among patients receiving radiation therapy, long-term sequalae are often unavoidable, and there is accumulating clinical evidence suggesting significant radiation-related damage to the vascular endothelium. Ionizing radiation has been known to cause obliterative fibrosis and increased wall thickness in irradiated blood vessels. Clinically, these vascular changes induced by ionizing radiation can pose unique surgical challenges when operating in radiated fields. Here, we review the relevant literature on radiation-induced vascular damage focusing on mechanisms and signaling pathways involved and highlight microsurgical anastomotic outcomes after radiotherapy. In addition, we briefly comment on potential therapeutic strategies, which may have the ability to mitigate radiation injury to the vascular endothelium.


Assuntos
Neoplasias , Lesões por Radiação , Lesões do Sistema Vascular , Masculino , Humanos , Lesões do Sistema Vascular/etiologia , Lesões por Radiação/etiologia , Neoplasias/complicações , Endotélio Vascular , Mama/patologia , Radioterapia/efeitos adversos
8.
Plast Reconstr Surg Glob Open ; 11(10): e5306, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37817924

RESUMO

Background: As visibility of the transgender patient population and utilization of online resources increases, it is imperative that web-based gender-affirming surgery (GAS) materials for patients are readable, accessible, and of high quality. Methods: A search trends analysis was performed to determine frequency of GAS-related searches over time. The top 100 most common results for GAS-related terms were analyzed using six readability formulas. Accessibility of patient-facing GAS sources was determined by categorizing types of search results. Frequency of article types was compared in low- and high-population dense areas. Quality was assigned to GAS web-based sources using the DISCERN score. Results: Search engine trend data demonstrates increasing occurrence of searches related to GAS. Readability scores of the top 100 online sources for GAS were discovered to exceed recommended levels for patient proficiency. Availability of patient-facing online information related to GAS was found to be 60%, followed by information provided by insurance companies (17%). Differences in availability of online resources in varying dense cities were found to be minimal. The average quality of sources determined by the DISCERN score was found to be 3, indicating "potential important shortcomings." Conclusions: Despite increasing demand for web-based GAS information, the readability of online resources related to GAS was found to be significantly greater than the grade level of proficiency recommended for patients. A high number of nonpatient-facing search results appear in response to GAS search terms. Quality sources are still difficult for patients to find, as search results have a high incidence of low-quality resources.

9.
Cell Stem Cell ; 30(10): 1368-1381.e6, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37714154

RESUMO

In adult mammals, skin wounds typically heal by scarring rather than through regeneration. In contrast, "super-healer" Murphy Roths Large (MRL) mice have the unusual ability to regenerate ear punch wounds; however, the molecular basis for this regeneration remains elusive. Here, in hybrid crosses between MRL and non-regenerating mice, we used allele-specific gene expression to identify cis-regulatory variation associated with ear regeneration. Analyzing three major cell populations (immune, fibroblast, and endothelial), we found that genes with cis-regulatory differences specifically in fibroblasts were associated with wound-healing pathways and also co-localized with quantitative trait loci for ear wound-healing. Ectopic treatment with one of these proteins, complement factor H (CFH), accelerated wound repair and induced regeneration in typically fibrotic wounds. Through single-cell RNA sequencing (RNA-seq), we observed that CFH treatment dramatically reduced immune cell recruitment to wounds, suggesting a potential mechanism for CFH's effect. Overall, our results provide insights into the molecular drivers of regeneration with potential clinical implications.


Assuntos
Orelha , Cicatrização , Camundongos , Animais , Alelos , Orelha/lesões , Orelha/patologia , Cicatrização/genética , Cicatriz/patologia , Camundongos Endogâmicos , Mamíferos
11.
Biomedicines ; 11(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37626760

RESUMO

Historically believed to be a homogeneous cell type that is often overlooked, fibroblasts are more and more understood to be heterogeneous in nature. Though the mechanisms behind how fibroblasts participate in homeostasis and pathology are just beginning to be understood, these cells are believed to be highly dynamic and play key roles in fibrosis and remodeling. Focusing primarily on fibroblasts within the skin and during wound healing, we describe the field's current understanding of fibroblast heterogeneity in form and function. From differences due to embryonic origins to anatomical variations, we explore the diverse contributions that fibroblasts have in fibrosis and plasticity. Following this, we describe molecular techniques used in the field to provide deeper insights into subpopulations of fibroblasts and their varied roles in complex processes such as wound healing. Limitations to current work are also discussed, with a focus on future directions that investigators are recommended to take in order to gain a deeper understanding of fibroblast biology and to develop potential targets for translational applications in a clinical setting.

12.
Biology (Basel) ; 12(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626931

RESUMO

Pancreatic cancer is one of the deadliest forms of cancer with one of the lowest 5-year survival rates of all cancer types. A defining characteristic of pancreatic cancer is the existence of dense desmoplastic stroma that, when exposed to stimuli such as cytokines, growth factors, and chemokines, generate a tumor-promoting environment. Cancer-associated fibroblasts (CAFs) are activated during the progression of pancreatic cancer and are a crucial component of the tumor microenvironment (TME). CAFs are primarily pro-tumorigenic in their activated state and function as promoters of cancer invasion, proliferation, metastasis, and immune modulation. Aided by many signaling pathways, cytokines, and chemokines in the tumor microenvironment, CAFs can originate from many cell types including resident fibroblasts, mesenchymal stem cells, pancreatic stellate cells, adipocytes, epithelial cells, endothelial cells, and other cell types. CAFs are a highly heterogeneous cell type expressing a variety of surface markers and performing a wide range of tumor promoting and inhibiting functions. Single-cell transcriptomic analyses have revealed a high degree of specialization among CAFs. Some examples of CAF subpopulations include myofibrotic CAFs (myCAFs), which exhibit a matrix-producing contractile phenotype; inflammatory CAFs (iCAF) that are classified by their immunomodulating, secretory phenotype; and antigen-presenting CAFs (apCAFs), which have antigen-presenting capabilities and express Major Histocompatibility Complex II (MHC II). Over the last several years, various attempts have been undertaken to describe the mechanisms of CAF-tumor cell interaction, as well as CAF-immune cell interaction, that contribute to tumor proliferation, invasion, and metastasis. Although our understanding of CAF biology in cancer has steadily increased, the extent of CAFs heterogeneity and their role in the pathobiology of pancreatic cancer remains elusive. In this regard, it becomes increasingly evident that further research on CAFs in pancreatic cancer is necessary.

13.
Ann Plast Surg ; 91(6): 779-783, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37553786

RESUMO

ABSTRACT: Cancer is currently the second leading cause of death in the United States. There is increasing evidence that the tumor microenvironment (TME) is pivotal for tumorigenesis and metastasis. Recently, adipocytes and cancer-associated fibroblasts (CAFs) in the TME have been shown to play a major role in tumorigenesis of different cancers, specifically melanoma. Animal studies have shown that CAFs and adipocytes within the TME help tumors evade the immune system, for example, by releasing chemokines to blunt the effectiveness of the host defense. Although studies have identified that adipocytes and CAFs play a role in tumorigenesis, adipocyte transition to fibroblast within the TME is fairly unknown. This review intends to elucidate the potential that adipocytes may have to transition to fibroblasts and, as part of the TME, a critical role that CAFs may play in affecting the growth and invasion of tumor cells. Future studies that illuminate the function of adipocytes and CAFs in the TME may pave way for new antitumor therapies.


Assuntos
Fibroblastos Associados a Câncer , Melanoma , Animais , Fibroblastos/patologia , Fibroblastos Associados a Câncer/patologia , Carcinogênese/patologia , Melanoma/patologia , Microambiente Tumoral/fisiologia
14.
Plast Reconstr Surg ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37344932

RESUMO

BACKGROUND: Fibrosis is a complication of both tendon injuries and repairs. We aim to develop a mouse model to assess tendon fibrosis and to identify an antifibrotic agent capable of overcoming tendon fibrosis. METHODS: Adult C57Bl/6 mice underwent a skin incision to expose the Achilles tendon, followed by 50% tendon injury and abrasion with sandpaper. Sham surgeries were conducted on contralateral hindlimbs. Histology and immunofluorescent staining for fibrotic markers (Col1, α-SMA) were used to confirm that the model induced tendon fibrosis. A second experiment was conducted to further examine the role of α-SMA in adhesion formation using α-SMA.mTmG mice (6-8 weeks old) (n=3) with the same injury model. The control group (tendon injury) was compared to the sham group, using the contralateral limb with skin incision only. A second experiment was conducted to further examine the role of α-SMA in adhesion formation using α-SMA.mTmG mice (6-8 weeks old) (n=3) with the same injury model. The control group (tendon injury) was compared to the sham group, using the contralateral limb with skin incision only. Lastly, α-SMA.mTmG mice were randomized to either condition 1. Tendon injury (control group) or 2. Tendon injury with Galectin-3 inhibitor (Gal3i) treatment at time of injury (treatment group). RESULTS: Histological analyses confirmed tendon thickening and collagen deposition after tendon injury and abrasion compared to control. Immunofluorescence showed higher levels of Col1 and α-SMA protein expression after injury compared to sham (*p<0.05). RT-qPCR also demonstrated increased gene expression of Col1 and α-SMA after injury compared to sham (*p<0.05). Gal3 protein expression also increased after injury and co-localized with α-SMA positive fibroblasts surrounding the fibrotic tendon. Gal3i treatment decreased collagen deposition and scarring observed in the treatment group (*p<0.05). Flow cytometry analysis further showed reduced numbers of profibrotic fibroblasts (CD26+) in the treatment compared to the control group (*p<0.05). CONCLUSIONS: Our study provides a reproducible and reliable model to investigate tendon fibrosis. Findings suggest the potential of Gal3i to overcome fibrosis resulting from tendon injuries.

15.
Front Surg ; 10: 1167067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143767

RESUMO

Wound healing results in the formation of scar tissue which can be associated with functional impairment, psychological stress, and significant socioeconomic cost which exceeds 20 billion dollars annually in the United States alone. Pathologic scarring is often associated with exaggerated action of fibroblasts and subsequent excessive accumulation of extracellular matrix proteins which results in fibrotic thickening of the dermis. In skin wounds, fibroblasts transition to myofibroblasts which contract the wound and contribute to remodeling of the extracellular matrix. Mechanical stress on wounds has long been clinically observed to result in increased pathologic scar formation, and studies over the past decade have begun to uncover the cellular mechanisms that underly this phenomenon. In this article, we will review the investigations which have identified proteins involved in mechano-sensing, such as focal adhesion kinase, as well as other important pathway components that relay the transcriptional effects of mechanical forces, such as RhoA/ROCK, the hippo pathway, YAP/TAZ, and Piezo1. Additionally, we will discuss findings in animal models which show the inhibition of these pathways to promote wound healing, reduce contracture, mitigate scar formation, and restore normal extracellular matrix architecture. Recent advances in single cell RNA sequencing and spatial transcriptomics and the resulting ability to further characterize mechanoresponsive fibroblast subpopulations and the genes that define them will be summarized. Given the importance of mechanical signaling in scar formation, several clinical treatments focused on reducing tension on the wound have been developed and are described here. Finally, we will look toward future research which may reveal novel cellular pathways and deepen our understanding of the pathogenesis of pathologic scarring. The past decade of scientific inquiry has drawn many lines connecting these cellular mechanisms that may lead to a map for the development of transitional treatments for patients on the path to scarless healing.

16.
Tissue Eng Part B Rev ; 29(6): 671-680, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37212342

RESUMO

Surgical implants are increasingly used across multiple medical disciplines, with applications ranging from tissue reconstruction to improving compromised organ and limb function. Despite their significant potential for improving health and quality of life, biomaterial implant function is severely limited by the body's immune response to its presence: this is known as the foreign body response (FBR) and is characterized by chronic inflammation and fibrotic capsule formation. This response can result in life-threatening sequelae such as implant malfunction, superimposed infection, and associated vessel thrombosis, in addition to soft tissue disfigurement. Patients may require frequent medical visits, as well as repeated invasive procedures, increasing the burden on an already strained health care system. Currently, the FBR and the cells and molecular mechanisms that mediate it are poorly understood. With applications across a wide array of surgical specialties, acellular dermal matrix (ADM) has emerged as a potential solution to the fibrotic reaction seen with FBR. Although the mechanisms by which ADM decreases chronic fibrosis remain to be clearly characterized, animal studies across diverse surgical models point to its biomimetic properties that facilitate decreased periprosthetic inflammation and improved host cell incorporation. Impact Statement Foreign body response (FBR) is a significant limitation to the use of implantable biomaterials. Acellular dermal matrix (ADM) has been observed to decrease the fibrotic reaction seen with FBR, although its mechanistic details are poorly understood. This review is dedicated to summarizing the primary literature on the biology of FBR in the context of ADM use, using surgical models in breast reconstruction, abdominal and chest wall repair, and pelvic reconstruction. This article will provide readers with an overarching review of shared mechanisms for ADM across multiple surgical models and diverse anatomical applications.


Assuntos
Derme Acelular , Corpos Estranhos , Animais , Humanos , Qualidade de Vida , Inflamação , Fibrose
17.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066136

RESUMO

While past studies have suggested that plasticity exists between dermal fibroblasts and adipocytes, it remains unknown whether fat actively contributes to fibrosis in scarring. We show that adipocytes convert to scar-forming fibroblasts in response to Piezo -mediated mechanosensing to drive wound fibrosis. We establish that mechanics alone are sufficient to drive adipocyte-to- fibroblast conversion. By leveraging clonal-lineage-tracing in combination with scRNA-seq, Visium, and CODEX, we define a "mechanically naïve" fibroblast-subpopulation that represents a transcriptionally intermediate state between adipocytes and scar-fibroblasts. Finally, we show that Piezo1 or Piezo2 -inhibition yields regenerative healing by preventing adipocytes' activation to fibroblasts, in both mouse-wounds and a novel human-xenograft-wound model. Importantly, Piezo1 -inhibition induced wound regeneration even in pre-existing established scars, a finding that suggests a role for adipocyte-to-fibroblast transition in wound remodeling, the least-understood phase of wound healing. Adipocyte-to-fibroblast transition may thus represent a therapeutic target for minimizing fibrosis via Piezo -inhibition in organs where fat contributes to fibrosis.

18.
Arterioscler Thromb Vasc Biol ; 43(7): 1262-1277, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37051932

RESUMO

BACKGROUND: Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia. METHODS: The ActinCreER/R26VT2/GK3 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation. Prospective isolation and transplantation were used to determine vessel-forming capacity of different populations. Single-cell RNA-sequencing was used to characterize distinct vessel-forming populations and their interactions. RESULTS: Two populations of distinct vascular stem/progenitor cells (VSPCs) were identified from adipose-derived mesenchymal stromal cells: VSPC1 is CD45-Ter119-Tie2+PDGFRa-CD31+CD105highSca1low, which gives rise to stunted vessels (incomplete tubular structures) in a transplant setting, and VSPC2 which is CD45-Ter119-Tie2+PDGFRa+CD31-CD105lowSca1high and forms stunted vessels and fat. Interestingly, cotransplantation of VSPC1 and VSPC2 is required to form functional vessels that improve perfusion in the mouse hindlimb ischemia model. Similarly, VSPC1 and VSPC2 populations isolated from human adipose tissue could rescue the ischemic condition in mice. CONCLUSIONS: These findings suggest that autologous cotransplantation of synergistic VSPCs from nonessential adipose tissue can promote neovascularization and represents a promising treatment for ischemic disease.


Assuntos
Células-Tronco Mesenquimais , Neovascularização Fisiológica , Camundongos , Humanos , Animais , Neovascularização Fisiológica/fisiologia , Tecido Adiposo , Neovascularização Patológica , Isquemia/terapia , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea
19.
Front Med (Lausanne) ; 10: 1015711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873870

RESUMO

There is undisputable benefit in translating basic science research concretely into clinical practice, and yet, the vast majority of therapies and treatments fail to achieve approval. The rift between basic research and approved treatment continues to grow, and in cases where a drug is granted approval, the average time from initiation of human trials to regulatory marketing authorization spans almost a decade. Albeit with these hurdles, recent research with deferoxamine (DFO) bodes significant promise as a potential treatment for chronic, radiation-induced soft tissue injury. DFO was originally approved by the Food and Drug Administration (FDA) in 1968 for the treatment of iron overload. However, investigators more recently have posited that its angiogenic and antioxidant properties could be beneficial in treating the hypovascular and reactive-oxygen species-rich tissues seen in chronic wounds and radiation-induced fibrosis (RIF). Small animal experiments of various chronic wound and RIF models confirmed that treatment with DFO improved blood flow and collagen ultrastructure. With a well-established safety profile, and now a strong foundation of basic scientific research that supports its potential use in chronic wounds and RIF, we believe that the next steps required for DFO to achieve FDA marketing approval will include large animal studies and, if those prove successful, human clinical trials. Though these milestones remain, the extensive research thus far leaves hope for DFO to bridge the gap between bench and wound clinic in the near future.

20.
Plast Reconstr Surg Glob Open ; 11(2): e4674, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36798717

RESUMO

Distraction osteogenesis (DO) is used for skeletal defects; however, up to 50% of cases exhibit complications. Previous mouse models of long bone DO have been anecdotally hampered by postoperative complications, expense, and availability. To improve clinical techniques, cost-effective, reliable animal models are needed. Our focus was to develop a new mouse tibial distractor, hypothesized to result in successful, complication-free DO. Methods: A lightweight tibial distractor was developed using CAD and 3D printing. The device was fixed to the tibia of C57Bl/6J mice prior to osteotomy. Postoperatively, mice underwent 5 days latency, 10 days distraction (0.15 mm every 12 hours), and 28 days consolidation. Bone regeneration was examined on postoperative day 43 using micro-computed tomography (µCT) and Movat's modified pentachrome staining on histology (mineralized volume fraction and pixels, respectively). Costs were recorded. We compared cohorts of 11 mice undergoing sham, DO, or acute lengthening (distractor acutely lengthened 3.0 mm). Results: The histological bone regenerate was significantly increased in DO (1,879,257 ± 155,415 pixels) compared to acute lengthening (32847 ± 1589 pixels) (P < 0.0001). The mineralized volume fraction (bone/total tissue volume) of the regenerate was significantly increased in DO (0.9 ± 0.1) compared to acute lengthening (0.7 ± 0.1) (P < 0.001). There was no significant difference in bone regenerate between DO and sham. The distractor was relatively low cost ($11), with no complications. Conclusions: Histology and µCT analysis confirmed that the proposed tibial DO model resulted in successful bone formation. Our model is cost-effective and reproducible, enabling implementation in genetically dissectible transgenic mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...