Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 19(7): 1489-1498, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051891

RESUMO

ABSTRACT: Alzheimer's disease is the most prevalent neurodegenerative disease affecting older adults. Primary features of Alzheimer's disease include extracellular aggregation of amyloid-ß plaques and the accumulation of neurofibrillary tangles, formed by tau protein, in the cells. While there are amyloid-ß-targeting therapies for the treatment of Alzheimer's disease, these therapies are costly and exhibit potential negative side effects. Mounting evidence suggests significant involvement of tau protein in Alzheimer's disease-related neurodegeneration. As an important microtubule-associated protein, tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth. In fact, clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-ß in the brain. Various therapeutic strategies targeting tau protein have begun to emerge, and are considered possible methods to prevent and treat Alzheimer's disease. Specifically, abnormalities in post-translational modifications of the tau protein, including aberrant phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, acetylation, and truncation, contribute to its microtubule dissociation, misfolding, and subcellular missorting. This causes mitochondrial damage, synaptic impairments, gliosis, and neuroinflammation, eventually leading to neurodegeneration and cognitive deficits. This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer's disease and discusses tau-targeted treatment of Alzheimer's disease.

3.
Anal Chem ; 93(42): 14256-14262, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34651497

RESUMO

A cross-reactive sensor array is powerful for high-throughput discrimination of various kinds of metal ions. However, the construction of a multicomponent sensor array is always time-consuming and cost-ineffective. Herein, a practical four-component X1-based sensor array (X1SA) was obtained by simply dissolving a single dye molecule X1 in respective solvents such as methanol, ethanol, dimethyl sulfoxide, and acetonitrile. In this design, X1 exhibits strong solvatochromic fluorescence properties via an excited-state intramolecular proton transfer and intramolecular charge transfer combined mechanism. Moreover, rotation of the C-N bond between the pyridine and coumarin units in X1 enabled it to coordinate with metal ions through different binding modes, which acted as an additional dimension of the sensor array. Inspired by this C-N bond rotation strategy, X1SA was determined to be powerful in discriminating 20 kinds of metal ions in both phosphate-buffered saline and 5% serum media in a range of 0.1-100 µM. In addition, the sensor array was also successfully applied in differentiating similar and mixed metal ions such as Fe3+/Fe2+, Cd2+/Hg2+, and Sn2+/Pb2+ in serum samples, which is meaningful for investigating the biological roles of iron and early diagnosis of related metal poisoning accidents.


Assuntos
Cumarínicos , Metais , Fluorescência , Íons , Piridinas
4.
Theranostics ; 11(11): 5511-5524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859760

RESUMO

Background: Abnormal tau accumulation in the brain has a positively correlation with neurodegeneration and memory deterioration, but the mechanism underlying tau-associated synaptic and cognitive impairments remains unclear. Our previous work has found that human full length tau (hTau) accumulation activated signal transducer and activator of transcription-1 (STAT1) to suppress N-methyl-D-aspartate receptors (NMDARs) expression, followed by memory deficits. STAT3 also belongs to STAT protein family and is reported to involve in regulation of synaptic plasticity and cognition. Here, we investigated the role of STAT3 in the cognitive deficits induced by hTau accumulation. Methods:In vitro studies HEK293 cells were used. EMSA, Luciferase reporter assay, and Immunoprecipitation were applied to detect STAT3 activity. In vivo studies, AAV virus were injected into the hippocampal CA3 region of C57 mice. Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence were applied to examine the level of synaptic proteins. Electrophysiological analysis, behavioral testing and Golgi impregnation were used to determine synaptic plasticity and memory ability recovery after overexpressing STAT3 or non-acetylated STAT1. Results: Our results showed that hTau accumulation acetylated STAT1 to retain STAT3 in the cytoplasm by increasing the binding of STAT1 with STAT3, and thus inactivated STAT3. Overexpressing STAT3 or non-acetylated STAT1 ameliorated hTau-induced synaptic loss and memory deficits by increasing the expression of NMDARs. Conclusions: Taken together, our study indicates that hTau accumulation impaired synaptic plasticity through STAT3 inactivation induced suppression of NMDARs expression, revealing a novel mechanism for hTau-associated synapse and memory deficits.


Assuntos
Doença de Alzheimer/metabolismo , Disfunção Cognitiva/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Cognição/fisiologia , Modelos Animais de Doenças , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Fosforilação/fisiologia , Fator de Transcrição STAT1/metabolismo , Sinapses/metabolismo , Proteínas tau/metabolismo
5.
Signal Transduct Target Ther ; 5(1): 295, 2020 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-33361763

RESUMO

In tauopathies, memory impairment positively strongly correlates with the amount of abnormal tau aggregates; however, how tau accumulation induces synapse impairment is unclear. Recently, we found that human tau accumulation activated Signal Transduction and Activator of Transcription-1 (STAT1) to inhibit the transcription of synaptic N-methyl-D-aspartate receptors (NMDARs). Here, overexpressing human P301L mutant tau (P301L-hTau) increased the phosphorylated level of Signal Transduction and Activator of Transcription-3 (STAT3) at Tyr705 by JAK2, which would promote STAT3 translocate into the nucleus and activate STAT3. However, STAT3 was found mainly located in the cytoplasm. Further study found that P301L-htau acetylated STAT1 to bind with STAT3 in the cytoplasm, and thus inhibited the nuclear translocation and inactivation of STAT3. Knockdown of STAT3 in STAT3flox/flox mice mimicked P301L-hTau-induced suppression of NMDARs expression, synaptic and memory impairments. Overexpressing STAT3 rescued P301L-hTau-induced synaptic and cognitive deficits by increasing NMDARs expression. Further study proved that STAT3 positively regulated NMDARs transcription through direct binding to the specific GAS element of NMDARs promoters. These findings indicate that accumulated P301L-hTau inactivating STAT3 to suppress NMDARs expression, revealed a novel mechanism for tau-associated synapse and cognition deficits, and STAT3 will hopefully serve as a potential pharmacological target for tauopathies treatment.


Assuntos
Disfunção Cognitiva/metabolismo , Demência Frontotemporal/metabolismo , Transtornos da Memória/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Fator de Transcrição STAT3/metabolismo , Animais , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Demência Frontotemporal/genética , Humanos , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética , Fator de Transcrição STAT3/genética , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Aging Cell ; 19(9): e13209, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32815315

RESUMO

Intracellular accumulating of the hyperphosphorylated tau plays a pivotal role in neurodegeneration of Alzheimer disease (AD), but the mechanisms underlying the gradually aggravated tau hyperphosphorylation remain elusive. Here, we show that increasing intracellular tau could upregulate mRNA and protein levels of TRPC1 (transient receptor potential channel 1) with an activated store-operated calcium entry (SOCE), an increased intraneuronal steady-state [Ca2+ ]i , an enhanced endoplasmic reticulum (ER) stress, an imbalanced protein kinases and phosphatase, and an aggravated tauopathy. Furthermore, overexpressing TRPC1 induced ER stress, kinases-phosphatase imbalance, tau hyperphosphorylation and cognitive deficits in cultured neurons and mice, while pharmacological inhibiting or knockout TRPC1 attenuated the hTau-induced deregulations in SOCE, ER homeostasis, kinases-phosphatase balance, and tau phosphorylation level with improved synaptic and cognitive functions. Finally, an increased CCAAT-enhancer-binding protein (C/EBPß) activity was observed in hTau-overexpressing cells and the hippocampus of the AD patients, while downregulating C/EBPß by siRNA abolished the hTau-induced TRPC1 upregulation. These data reveal that increasing intracellular tau can upregulate C/EBPß-TRPC1-SOCE signaling and thus disrupt phosphorylating system, which together aggravates tau pathologies leading to a chronic neurodegeneration.


Assuntos
Doença de Alzheimer/genética , Doenças Neurodegenerativas/genética , Tauopatias/genética , Animais , Humanos , Camundongos , Transdução de Sinais , Regulação para Cima
7.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1477-1489, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30826466

RESUMO

BACKGROUND: Maternal immune activation (MIA) is an independent risk factor for psychiatric disorders including depression spectrum in the offsprings, but the molecular mechanism is unclear. Recent studies show that interferon-stimulated gene-15 (ISG15) is involved in inflammation and neuronal dendrite development; here we studied the role of ISG15 in MIA-induced depression and the underlying mechanisms. METHODS: By vena caudalis injecting polyinosinic: polycytidylic acid (poly I:C) into the pregnant rats to mimic MIA, we used AAV or lentivirus to introduce or silence ISG15 expression. Synaptic plasticity was detected by confocal microscope and Golgi staining. Cognitive performances of the offspring were measured by Open field, Forced swimming and Sucrose preference test. RESULTS: We found that MIA induced depression-like behaviors with dendrite impairments in the offspring with ISG15 level increased in the offsprings' brain. Overexpressing ISG15 in the prefrontal cortex of neonatal cubs (P0) could mimic dendritic pathology and depressive like behaviors, while downregulating ISG15 rescued these abnormalities in the offsprings. Further studies demonstrated that MIA-induced upregulation of inflammatory cytokines promoted ISG15 expression in the offspring' brain which suppressed Rap2A ubiquitination via NEDD4 and thus induced Rap2A accumulation, while upregulating NEDD4 abolished ISG15-induced dendrite impairments. CONCLUSIONS: These data reveal that MIA impedes offsprings' dendrite development and causes depressive like behaviors by upregulating ISG15 and suppressing NEDD4/Rap2A signaling. The current findings suggest that inhibiting ISG15 may be a promising intervention of MIA-induced psychiatric disorders in the offsprings.


Assuntos
Citocinas/genética , Dendritos/metabolismo , Proteínas de Ligação ao GTP/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Ubiquitinas/genética , Animais , Escala de Avaliação Comportamental , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Dendritos/imunologia , Dendritos/patologia , Depressão , Modelos Animais de Doenças , Feminino , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/imunologia , Regulação da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Inflamação , Injeções Intravenosas , Ubiquitina-Proteína Ligases Nedd4/antagonistas & inibidores , Ubiquitina-Proteína Ligases Nedd4/imunologia , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurogênese/imunologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Plasticidade Neuronal/imunologia , Poli I-C/administração & dosagem , Córtex Pré-Frontal/imunologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/imunologia
8.
J BUON ; 22(4): 1004-1010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28952220

RESUMO

PURPOSE: We conducted a network meta-analysis to evaluate the efficacy and toxicity of cetuximab and nimotuzumab in the treatment of advanced nasopharyngeal carcinoma (NPC). METHODS: A systematic literature search was performed though Pubmed, Embase, Cochran Library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical (CBM) and Wanfang databases. Totally, 19 randomized controlled trials (RCTs) (n=1201) met the study selection criteria and were incorporated in this network meta-analysis. RESULTS: Compared with cetuximab, the results of network meta-analysis indicated that nimotuzumab may achieve higher complete remission rate (CRR) or overall remission rate (ORR) of the primary tumor, but no difference was noticed in 1- and 2-year overall survival (OS) rate and certain toxicities such as myelosuppression, radiodermatitis, mucositis and gastrointestinal reactions. Although nimotuzumab increased the 3-year OS rate, compared with cetuximab, this result needs to be interpreted cautiously because of the studies' heterogeneity. CONCLUSION: Even though we didn't find significant difference between cetuximab and nimotuzumab in terms of survival outcomes, nimotuzumab is more advantageous in short-term efficacy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/uso terapêutico , Carcinoma Nasofaríngeo/tratamento farmacológico , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Cetuximab/efeitos adversos , China , Humanos , Carcinoma Nasofaríngeo/mortalidade , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...