Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 187(11): 600, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33034762

RESUMO

An electrochemical immunosensor based on ferrocene (Fc)-functionalized nanocomposites was fabricated as an efficient electroactive signal probe to amplify electrochemical signals for Salmonella typhimurium detection. The electrochemical signal amplification probe was constructed by encapsulating ferrocene into S. typhimurium-specific antimicrobial peptides Magainin I (MI)-Cu3(PO4)2 organic-inorganic nanocomposites (Fc@MI) through a one-step process. Magnetic beads (MBs) coupled with antibody were used as capture ingredient for target magnetic separation, and Fc@MI nanoparticles were used as signal labels in the immunoassays. The sandwich of MBs-target-Fc@MI assay was performed using a screen-printed carbon electrode as transducer surface. The immunosensor platform presents a low limit of detection (LOD) of 3 CFU·mL-1 and a linear range from 10 to 107 CFU·mL-1, with good specificity and precision, and was successfully applied for S. typhimurium detection in milk. Graphical abstract One-pot process antimicrobial peptides Magainin I-Cu3(PO4)2 organic-inorganic nanocomposites (Fc@MI) were used as ideal electrochemical signal label, integrating both essential functions of biological recognition and signal amplification. Screen-printed carbon electrode (SPCE) was used as the electrochemical system for Salmonella typhimurium detection.


Assuntos
Técnicas Eletroquímicas/instrumentação , Compostos Ferrosos/química , Imunoensaio/métodos , Metalocenos/química , Nanocompostos/química , Salmonella typhimurium/isolamento & purificação , Técnicas Eletroquímicas/métodos , Sensibilidade e Especificidade , Transdução de Sinais
2.
Mikrochim Acta ; 186(5): 296, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31016400

RESUMO

An innovative approach is presented for portable and sensitive detection of pathogenic bacteria. A novel synthetic hybrid nanocomposite encapsulating platinum nanoparticles, as a highly efficient catalyst, catalyzes the hydrolysis of the ammonia-borane complex to generate hydrogen gas. The nanocomposites are used as a label for immunoassays. A portable hand-held hydrogen detector combined with nanocomposite-induced signal conversion was applied for point-of-care testing of pathogenic bacteria. A hand-held hydrogen detector was used as the transducer. Escherichia coli O157:H7 (E. coli O157: H7), as detection target, formed a sandwich structure with magnetic beads and hybrid nanocomposites. Magnetic beads were used for separation of the sandwich structure, and hybrid nanocomposites as catalysts to catalyze the generation of hydrogen from ammonia-borane. The generated hydrogen was detected by a hydrogen detector using an electrochemical method. E. coli O157:H7 has a detection limit of 10 CFU·mL-1. The immunosensor made the hand-held hydrogen detector a point-of-care meter to be used outdoors for the detection and quantification of targets beyond hydrogen. Graphical abstract Schematic presentation of one-pot synthetic peptide-Cu3(PO4)2 hybrid nanocomposites embedded PtNPs (PPNs), encapsulating many Pt particles. The PPNs acts as an ideal immunoprobe for hand-held H2 detector signal readouts, by transforming pathogenic bacteria recognition events into H2 signals.

3.
Mikrochim Acta ; 186(2): 57, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617909

RESUMO

Disposable syringes were used in a novel point-of-care visual test for detecting pathogenic bacteria (Escherichia coli O157:H7 and Salmonella typhimurium). Hybrid nanoflowers composed of platinum nanoparticles and concanavalin A (Pt-nanoflowers) were prepared through a one-pot reaction and were found to be viable catalase mimics. They catalyze the decomposition of hydrogen peroxide (H2O2) to generate O2. When used as labels in immunoassays, they integrate both the functions of biological recognition and signal amplification. The disposable syringe pressure readout was combined with Pt-nanoflower signal conversion and successfully applied to a visual bacteria detection scheme. Both Escherichia coli O157:H7 and Salmonella typhimurium can be quantified with detection limits of as low as 15 and 7 CFU·mL-1, respectively. Graphical abstract One-pot synthetic platinum nanoparticle (PtNP)-concanavalin A hybrid nanoflowers (Pt-nanoflowers), have been used as ideal signal labels for immunoassays and integrating both essential functions of biological recognition and signal amplification. Disposable syringes were used as a readout to detect pathogenic bacteria.


Assuntos
Escherichia coli O157/isolamento & purificação , Peróxido de Hidrogênio/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Salmonella typhimurium/isolamento & purificação , Seringas , Animais , Anticorpos/imunologia , Concanavalina A/química , Escherichia coli O157/química , Escherichia coli O157/imunologia , Microbiologia de Alimentos/instrumentação , Microbiologia de Alimentos/métodos , Imunoensaio/instrumentação , Limite de Detecção , Leite/microbiologia , Platina/química , Pressão , Salmonella typhimurium/química , Salmonella typhimurium/imunologia
4.
Bioorg Med Chem Lett ; 28(23-24): 3802-3807, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392778

RESUMO

Rapid, sensitive and point-of-care detection of foodborne pathogenic bacteria is essential for food safety. In this study, we found that hemin-concanavalin A hybrid nanoflowers (HCH nanoflowers), as solid mimic peroxidase, could catalyze oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) in the presence of H2O2 to a green-colored product. HCH nanoflowers, integrating the essential functions of both biological recognition and signal amplification, meet the requirements of signal labels for colorimetric immunoassay of bacteria. In view of the excellent peroxidase mimetic catalytic activity of HCH nanoflowers, a colorimetric biosensing platform was newly constructed and applied for sensitive detection of foodborne Escherichia coli O157:H7 (E. coli O157:H7). The corresponding detection limits was as low as 4.1 CFU/mL with wide linear ranges (101-106 CFU/mL).


Assuntos
Materiais Biomiméticos/química , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Hemina/química , Nanoestruturas/química , Animais , Benzotiazóis/química , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Peróxido de Hidrogênio/química , Imunoensaio/métodos , Limite de Detecção , Leite/microbiologia , Peroxidase/química , Ácidos Sulfônicos/química
5.
Parasitology ; 140(8): 952-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23552446

RESUMO

The present study was designated to ascertain the anthelmintic activity of the rhizomes of Paris polyphylla and to isolate and characterize the active constituents. The methanol extract from rhizomes of P. polyphylla showed significant anthelmintic activity against Dactylogyrus intermedius with the median effective concentration (EC50) 22.5 mg L(-1). Based on this finding, the methanol extract was fractionated by silica gel column chromatography in a bioassay-guided fractionation yielding 2 bioactive compounds, the structures of these compounds were elucidated as formosanin C and polyphyllin VII. The in vivo tests revealed that formosanin C and polyphyllin VII were significantly effective against D. intermedius with EC50 values of 0.6 and 1.2 mg L(-1), respectively. The acute toxicities (LC50) of formosanin C and polyphyllin VII for grass carp were 2.8 and 2.9 mg L(-1), respectively. The overall results provide important information for the potential application of formosanin C and polyphyllin VII in the therapy of serious infection caused by D. intermedius.


Assuntos
Anti-Helmínticos/farmacologia , Diosgenina/análogos & derivados , Doenças dos Peixes/tratamento farmacológico , Helmintíase Animal/tratamento farmacológico , Magnoliopsida/química , Platelmintos/efeitos dos fármacos , Saponinas/farmacologia , Animais , Anti-Helmínticos/química , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/toxicidade , Aquicultura , Bioensaio/veterinária , Carpas , Diosgenina/química , Diosgenina/isolamento & purificação , Diosgenina/farmacologia , Diosgenina/toxicidade , Doenças dos Peixes/parasitologia , Helmintíase Animal/parasitologia , Medicina Tradicional Chinesa , Metanol/química , Testes de Sensibilidade Parasitária/veterinária , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Rizoma/química , Saponinas/efeitos adversos , Saponinas/química , Saponinas/isolamento & purificação , Saponinas/toxicidade
6.
Int J Mol Sci ; 13(10): 13704-12, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23202975

RESUMO

Ricin toxin has been regarded as one of the most potent poisons in the plant kingdom, and there is no effective therapeutic countermeasure or licensed vaccine against it. Consequently, early detection of ricin intoxication is necessary. In this study, we took mice as test subjects, and used the technique of Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) and ClinProt™ microparticle beads to set up an effective detection model with an accuracy of almost 100%. Eighty-two peaks in the mass range 1000-10,000 m/z were detected by ClinProTools software, and five different peaks with m/z of 4982.49, 1333.25, 1537.86, 4285.05 and 2738.88 had the greatest contribution to the accuracy and sensitivity of this model. They may therefore provide biomarkers for ricin intoxication.


Assuntos
Peptídeos/sangue , Ricina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Biomarcadores/sangue , Feminino , Injeções Intraperitoneais , Magnetismo , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA