Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202402199, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117600

RESUMO

Isoindigo, an electron-withdrawing building block for polymeric field-effect transistors, has long been considered to be non-fluorescent. Moreover, using electron-deficient heterocycle to replace the phenyl ring in the isoindigo core for better electron transport behaviour is synthetically challenging. Here we report the syntheses of a series of tetraazaisoindigos, including pyrazinoisoindigo (PyrII), pyrimidoisoindigo (PymII) and their hybrid (PyrPymII), and the investigation on their photophysical and electric properties. Proper flanking groups need to be chosen to stabilize these highly electron-deficient bislactams. Both PyrII and PymII derivatives show lower LUMO energy levels than that of naphthalene bisimide (NDI). Interestingly, PyrII is instinctively unstable and can be easily reduced, while both PymII derivatives are stable. More surprisingly, PymII derivatives are highly fluorescent and their photoluminescence quantum yields are around 40%, 133 times higher than that of reported isoindigo derivatives. UV-vis spectroscopic results and theoretical calculations show that strong intramolecular hydrogen-bond exists in PymII, which prohibits it from non-radiative decay and accounts for its fluorescent behaviour.  PymII deriviatives are n-type semiconductors, while Ph-PyrII and the hybrid show balanced ambipolar charge transport behaviour, all among the best isoindigo derivatives. Our study not only discloses the structure-property relationship of tetraazaisoindigos, but also provides electron-deficient monomers for conjugated polymers.

2.
Cell ; 187(9): 2194-2208.e22, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552625

RESUMO

Effective treatments for complex central nervous system (CNS) disorders require drugs with polypharmacology and multifunctionality, yet designing such drugs remains a challenge. Here, we present a flexible scaffold-based cheminformatics approach (FSCA) for the rational design of polypharmacological drugs. FSCA involves fitting a flexible scaffold to different receptors using different binding poses, as exemplified by IHCH-7179, which adopted a "bending-down" binding pose at 5-HT2AR to act as an antagonist and a "stretching-up" binding pose at 5-HT1AR to function as an agonist. IHCH-7179 demonstrated promising results in alleviating cognitive deficits and psychoactive symptoms in mice by blocking 5-HT2AR for psychoactive symptoms and activating 5-HT1AR to alleviate cognitive deficits. By analyzing aminergic receptor structures, we identified two featured motifs, the "agonist filter" and "conformation shaper," which determine ligand binding pose and predict activity at aminergic receptors. With these motifs, FSCA can be applied to the design of polypharmacological ligands at other receptors.


Assuntos
Quimioinformática , Desenho de Fármacos , Polifarmacologia , Animais , Camundongos , Humanos , Quimioinformática/métodos , Ligantes , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/química , Masculino , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA