Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850159

RESUMO

Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A-SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D & P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A-SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance.

2.
JMIR Public Health Surveill ; 10: e55194, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857063

RESUMO

The globe is an organically linked whole, and in the pandemic era, COVID-19 has brought heavy public safety threats and economic costs to humanity as almost all countries began to pay more attention to taking steps to minimize the risk of harm to society from sudden-onset diseases. It is worth noting that in some low- and middle-income areas, where the environment for epidemic detection is complex, the causative and comorbid factors are numerous, and where public health resources are scarce. It is often more difficult than in other areas to obtain timely and effective detection and control in the event of widespread virus transmission, which, in turn, is a constant threat to local and global public health security. Pandemics are preventable through effective disease surveillance systems, with nonpharmacological interventions (NPIs) as the mainstay of the control system, effectively controlling the spread of epidemics and preventing larger outbreaks. However, current state-of-the-art NPIs are not applicable in low- and middle-income areas and tend to be decentralized and costly. Based on a 3-year case study of SARS-CoV-2 preventive detection in low-income areas in south-central China, we explored a strategic model for enhancing disease detection efficacy in low- and middle-income areas. For the first time, we propose an integrated and comprehensive approach that covers structural, social, and personal strategies to optimize the epidemic surveillance system in low- and middle-income areas. This model can improve the local epidemic detection efficiency, ensure the health care needs of more people, reduce the public health costs in low- and middle-income areas in a coordinated manner, and ensure and strengthen local public health security sustainably.


Assuntos
COVID-19 , Saúde Pública , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Saúde Pública/métodos , China/epidemiologia , Pobreza , Pandemias/prevenção & controle , Teste para COVID-19/métodos
3.
J Adv Res ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614215

RESUMO

INTRODUCTION: Senescence refers to a state of permanent cell growth arrest and is regarded as a tumor suppressive mechanism, whereas accumulative evidence demonstrate that senescent cells play an adverse role during cancer progression. The scarcity of specific and reliable markers reflecting senescence level in cancer impede our understanding of this biological basis. OBJECTIVES: Senescence-related genes (SRGs) were collected for integrative analysis to reveal the role of senescence in hepatocellular carcinoma (HCC). METHODS: Consensus clustering was used to subtype HCC based on SRGs. Several computational methods, including single sample gene set enrichment analysis (ssGSEA), fuzzy c-means algorithm, were performed. Data of drug sensitivities were utilized to screen potential therapeutic agents for different senescence patients. Additionally, we developed a method called signature-related gene analysis (SRGA) for identification of markers relevant to phenotype of interest. Experimental strategies consisting quantitative real-time PCR (qRT-PCR), ß-galactosidase assay, western blot, and tumor-T cell co-culture system were used to validate the findings in vitro. RESULTS: We identified three robust prognostic clusters of HCC patients with distinct survival outcome, mutational landscape, and immune features. We further extracted signature genes of senescence clusters to construct the senescence scoring system and profile senescence level in HCC at bulk and single-cell resolution. Senescence-induced stemness reprogramming was confirmed both in silico and in vitro. HCC patients with high senescence were immune suppressed and sensitive to Tozasertib and other drugs. We suggested that MAFG, PLIN3, and 4 other genes were pertinent to HCC senescence, and MAFG potentially mediated immune suppression, senescence, and stemness. CONCLUSION: Our findings provide insights into the role of SRGs in patients stratification and precision medicine.

4.
Oncogene ; 43(17): 1274-1287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443680

RESUMO

Cumulative studies have established the significance of transfer RNA-derived small RNA (tsRNA) in tumorigenesis and progression. Nevertheless, its function and mechanism in pancreatic cancer metastasis remain largely unclear. Here, we screened and identified tiRNA-Val-CAC-2 as highly expressed in pancreatic cancer metastasis samples by tsRNA sequencing. We also observed elevated levels of tiRNA-Val-CAC-2 in the serum of pancreatic cancer patients who developed metastasis, and patients with high levels of tiRNA-Val-CAC-2 exhibited a worse prognosis. Additionally, knockdown of tiRNA-Val-CAC-2 inhibited the metastasis of pancreatic cancer in vivo and in vitro, while overexpression of tiRNA-Val-CAC-2 promoted the metastasis of pancreatic cancer. Mechanically, we discovered that tiRNA-Val-CAC-2 interacts with FUBP1, leading to enhanced stability of FUBP1 protein and increased FUBP1 enrichment in the c-MYC promoter region, thereby boosting the transcription of c-MYC. Of note, rescue experiments confirmed that tiRNA-Val-CAC-2 could influence pancreatic cancer metastasis via FUBP1-mediated c-MYC transcription. These findings highlight a potential novel mechanism underlying pancreatic cancer metastasis, and suggest that both tiRNA-Val-CAC-2 and FUBP1 could serve as promising prognostic biomarkers and potential therapeutic targets for pancreatic cancer.

5.
Sci Adv ; 9(36): eadh2358, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682991

RESUMO

H2BK120ub1 triggers several prominent downstream histone modification pathways and changes in chromatin structure, therefore involving it into multiple critical cellular processes including DNA transcription and DNA damage repair. Although it has been reported that H2BK120ub1 is mediated by RNF20/40 and CRL4WDR70, less is known about the underlying regulation mechanism for H2BK120ub1 by WDR70. By using a series of biochemical and cell-based studies, we find that WDR70 promotes H2BK120ub1 by interacting with RNF20/40 complex, and deposition of H2BK120ub1 and H3K79me2 in POLE3 loci is highly sensitive to POLE3 transcription. Moreover, we demonstrate that POLE3 interacts CHRAC1 to promote DNA repair by regulation on the expression of homology-directed repair proteins and KU80 recruitment and identify CHRAC1 D121Y mutation in colorectal cancer, which leads to the defect in DNA repair due to attenuated the interaction with POLE3. These findings highlight a previously unknown role for WDR70 in maintenance of genomic stability and imply POLE3 and CHRAC1 as potential therapeutic targets in cancer.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Mutação , Processamento de Proteína Pós-Traducional , Reparo de DNA por Recombinação
6.
J Biol Chem ; 299(9): 105177, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37611825

RESUMO

Translational regulation is one of the decisive steps in gene expression, and its dysregulation is closely related to tumorigenesis. Eukaryotic translation initiation factor 3 subunit i (eIF3i) promotes tumor growth by selectively regulating gene translation, but the underlying mechanisms are largely unknown. Here, we show that eIF3i is significantly increased in colorectal cancer (CRC) and reinforces the proliferation of CRC cells. Using ribosome profiling and proteomics analysis, several genes regulated by eIF3i at the translation level were identified, including D-3-phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in the de novo serine synthesis pathway that participates in metabolic reprogramming of tumor cells. PHGDH knockdown significantly represses CRC cell proliferation and partially attenuates the excessive growth induced by eIF3i overexpression. Mechanistically, METTL3-mediated N6-methyladenosine modification on PHGDH mRNA promotes its binding with eIF3i, ultimately leading to a higher translational rate. In addition, knocking down eIF3i and PHGDH impedes tumor growth in vivo. Collectively, this study not only uncovered a novel regulatory mechanism for PHGDH translation but also demonstrated that eIF3i is a critical metabolic regulator in human cancer.


Assuntos
Neoplasias Colorretais , Fator de Iniciação 3 em Eucariotos , Regulação Neoplásica da Expressão Gênica , Fosfoglicerato Desidrogenase , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Metiltransferases/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , RNA Mensageiro/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação para Cima , Técnicas de Silenciamento de Genes , Regulação Neoplásica da Expressão Gênica/genética , Animais , Camundongos , Camundongos Endogâmicos BALB C , Feminino , Xenoenxertos
7.
Sci China Life Sci ; 66(3): 545-562, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36100837

RESUMO

Protein citrullination, including histone H1 and H3 citrullination, is important for transcriptional regulation, DNA damage response, and pluripotency of embryonic stem cells (ESCs). Tripartite motif containing 28 (Trim28), an embryonic development regulator involved in ESC self-renewal, has recently been identified as a novel substrate for citrullination by Padi4. However, the physiological functions of Trim28 citrullination and its role in regulating the chromatin structure and gene transcription of ESCs remain unknown. In this paper, we show that Trim28 is specifically citrullinated in mouse ESCs (mESCs), and that the loss of Trim28 citrullination induces loss of pluripotency. Mechanistically, Trim28 citrullination enhances the interaction of Trim28 with Smarcad1 and prevents chromatin condensation. Additionally, Trim28 citrullination regulates mESC pluripotency by promoting transcription of Nanog and Klf4 which it does by increasing the enrichment of H3K27ac and H3K4me3 and decreasing the enrichment of H3K9me3 in the transcriptional regulatory region. Thus, our findings suggest that Trim28 citrullination is the key for the epigenetic activation of pluripotency genes and pluripotency maintenance of ESCs. Together, these results uncover a role Trim28 citrullination plays in pluripotency regulation and provide novel insight into how citrullination of proteins other than histones regulates chromatin compaction.


Assuntos
Citrulinação , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Regulação da Expressão Gênica , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias , Diferenciação Celular , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , DNA Helicases
8.
Signal Transduct Target Ther ; 7(1): 388, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36481655

RESUMO

Chemoresistance has long been the bottleneck of ovarian cancer (OC) prognosis. It has been shown that mitochondria play a crucial role in cell response to chemotherapy and that dysregulated mitochondrial dynamics is intricately linked with diseases like OC, but the underlying mechanisms remain equivocal. Here, we demonstrate a new mechanism where CRL4CUL4A/DDB1 manipulates OC cell chemoresistance by regulating mitochondrial dynamics and mitophagy. CRL4CUL4A/DDB1 depletion enhanced mitochondrial fission by upregulating AMPKαThr172 and MFFSer172/Ser146 phosphorylation, which in turn recruited DRP1 to mitochondria. CRL4CUL4A/DDB1 loss stimulated mitophagy through the Parkin-PINK1 pathway to degrade the dysfunctional and fragmented mitochondria. Importantly, CRL4CUL4A/DDB1 loss inhibited OC cell proliferation, whereas inhibiting autophagy partially reversed this disruption. Our findings provide novel insight into the multifaceted function of the CRL4 E3 ubiquitin ligase complex in regulating mitochondrial fission, mitophagy, and OC chemoresistance. Disruption of CRL4CUL4A/DDB1 and mitophagy may be a promising therapeutic strategy to overcome chemoresistance in OC.


Assuntos
Mitofagia , Neoplasias Ovarianas , Feminino , Humanos , Proteínas Culina , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Resistencia a Medicamentos Antineoplásicos
9.
Sci Rep ; 7(1): 5789, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724934

RESUMO

We show that multi-level diffractive microstructures can enable broadband, on-axis transmissive holograms that can project complex full-color images, which are invariant to viewing angle. Compared to alternatives like metaholograms, diffractive holograms utilize much larger minimum features (>10 µm), much smaller aspect ratios (<0.2) and thereby, can be fabricated in a single lithography step over relatively large areas (>30 mm ×30 mm). We designed, fabricated and characterized holograms that encode various full-color images. Our devices demonstrate absolute transmission efficiencies of >86% across the visible spectrum from 405 nm to 633 nm (peak value of about 92%), and excellent color fidelity. Furthermore, these devices do not exhibit polarization dependence. Finally, we emphasize that our devices exhibit negligible absorption and are phase-only holograms with high diffraction efficiency.

10.
Appl Opt ; 55(3): A1-7, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26835940

RESUMO

A proximity-effect-correction (PEC) algorithm for three-dimensional (3D) single-photon gray-scale photolithography is proposed and numerically analyzed in this paper. The gray-scale dose assigned to every point within the photoresist volume is optimized to guarantee that the fabricated 3D patterns are as close to the designed patterns as possible. PEC optimizations for 3D woodpile geometries using low and high absorption photoresist are simulated. Spatial resolution of the proposed PEC algorithm is numerically studied. We also investigated the efficacy of our algorithm on a variety of related 3D geometries.

11.
J Opt Soc Am A Opt Image Sci Vis ; 31(12): B27-33, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606777

RESUMO

We utilized nonlinear optimization to design phase-only diffractive lenses that focus light to a spot, whose width is smaller than that dictated by the far-field diffraction limit. Although scalar-diffraction theory was utilized for the design, careful comparisons against rigorous finite-difference time-domain simulations confirm the superfocusing effect. We were able to design a lens with a focal spot size that is 25% smaller than that formed by a conventional lens of the same numerical aperture. An optimization strategy that allows one to design such lenses is clearly explained. Furthermore, we performed careful simulations to elucidate the effects of fabrication errors and defocus on the performance of such optimized lenses. Since these lenses are thin, binary, and planar, large uniform arrays could be readily fabricated enabling important applications in microscopy and lithography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...