Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 915569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783970

RESUMO

Strawberry is an economically grown horticulture crop required for fruit consumption. The ripening of its fruit is a complex biological process regulated by various hormones. Abscisic acid (ABA) is a critical phytohormone involved in fruit ripening. However, little is known about the long non-coding RNAs (LncRNAs), especially transposon-derived LncRNA (TE-lncRNA), response to hormones during fruit ripening in octoploid strawberry. In the study, the transcriptome data of developing strawberry fruits treated with ABA and its inhibitor Nordihydroguaiaretic acid (NGDA) were analyzed to identify responsive LncRNAs and coding genes. A total of 14,552 LncRNAs were identified, including 8,617 transposon-derived LncRNAs (TE-LncRNAs), 412 LncRNAs (282 TE-LncRNAs), and 382 ABA-sensitive LncRNAs (231 TE-LncRNAs). Additionally, a weighted co-expression network analysis constructed 27 modules containing coding RNAs and LncRNAs. Seven modules, including "MEdarkorange" and "MElightyellow" were significantly correlated with ABA/NDGA treatments, resulting in 247 hub genes, including 21 transcription factors and 22 LncRNAs (15 TE-LncRNAs). Gene ontology enrichment analysis further revealed that ABA/NDGA-responsive modules, including LncRNAs, were associated with various metabolic pathways involved in strawberry fruit development and ripening, including lipid metabolism, organic acid metabolism, and phenylpropanoid metabolism. The current study identifies many high-confidence LncRNAs in strawberry, with a percentage of them being ABA pathway-specific and 22 hub-responsive LncRNAs, providing new insight into strawberry or other Rosaceae crop fruit ripening.

2.
Food Chem ; 344: 128573, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199117

RESUMO

The rising awareness about the adverse health effects of high sugar consumption has led to regulatory amendments for triggering sugar reduction in food products. Sugar reduction in yogurt is a challenging endeavor due to the changes in taste, flavor, texture, maintenance of food functionality, shelf-life, cost and consumer acceptability. A review of the scientific literature, patents, and web articles revealed several approaches being explored by the dairy industry to reduce the sugar addition. A careful assessment of these strategies and their critical analysis is presented in this review. The strategies for sugar reduction involve multifaceted approaches including the use of alternative low-calorie sweeteners, honey, fruit preparations, novel cultures, lactase addition, inulin fiber addition, and flavor interventions. Much of the work so far has focused on development of low-calorie alternative sweeteners, and novel sweeteners-based solutions are evolving. The use of food structuring approaches remains to be explored for sugar reduction in yogurt.


Assuntos
Edulcorantes/análise , Iogurte/análise , Produtos Biológicos/análise , Humanos , Paladar
3.
Foods ; 7(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301243

RESUMO

Cold plasma (CP) technology has proven very effective as an alternative tool for food decontamination and shelf-life extension. The impact of CP on food quality is very crucial for its acceptance as an alternative food processing technology. Due to the non-thermal nature, CP treatments have shown no or minimal impacts on the physical, chemical, nutritional and sensory attributes of various products. This review also discusses the negative impacts and limitations posed by CP technology for food products. The limited studies on interactions of CP species with food components at the molecular level offers future research opportunities. It also highlights the need for optimization studies to mitigate the negative impacts on visual, chemical, nutritional and functional properties of food products. The design versatility, non-thermal, economical and environmentally friendly nature of CP offers unique advantages over traditional processing technologies. However, CP processing is still in its nascent form and needs further research to reach its potential.

4.
Water Sci Technol ; 76(3-4): 567-574, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28759439

RESUMO

High voltage atmospheric cold plasma (HVACP) is a novel, non-thermal technology which has shown potential for degradation of various toxic components in wastewater. In this study, HVACP was used to examine the degradation kinetics of methyl red, crystal violet and fast green FCF dyes. HVACP discharge was found to be a source of reactive nitrogen and oxygen species. High voltage application completely degraded all dyes tested in less than 5 min treatment time. Plasma from modified gas (∼65% O2) further reduced the treatment time by 50% vs. plasma from dry air. First order and Weibull models were fitted to the degradation data. The Weibull model was found better in explaining the degradation kinetics of all the treated dyes.


Assuntos
Corantes/química , Gases em Plasma , Águas Residuárias/química , Água/química , Atmosfera , Cinética , Oxigênio , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química
5.
J Sci Food Agric ; 97(12): 4016-4021, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28195339

RESUMO

BACKGROUND: This study focuses on the effects of novel, non-thermal high voltage atmospheric cold plasma (HVACP) processing on the quality of grape juice. A quality-based comparison of cold plasma treatment with thermal pasteurization treatment of white grape juice was done. RESULTS: HVACP treatment of grape juice at 80 kV for 4 min resulted in a 7.4 log10 CFU mL-1 reduction in Saccharomyces cerevisiae without any significant (P > 0.05) change in pH, acidity and electrical conductivity of the juice. An increase in non-enzymatic browning was observed, but total color difference was very low and within acceptable limits. Spectrophotometric measurements showed a decrease in total phenolics, total flavonoids, DPPH free radical scavenging and antioxidant capacity, but they were found to be comparable to those resulting from thermal pasteurization. An increase in total flavonols was observed after HVACP treatments. CONCLUSION: HVACP treatment of white grape juice at 80 kV for 2 min was found to be comparable to thermal pasteurization in all analyzed quality attributes. HVACP has shown the potential to be used as an alternative to thermal treatment of white grape juice. © 2017 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Frutas/química , Gases em Plasma/farmacologia , Vitis/química , Antioxidantes/análise , Flavonoides/análise , Flavonóis/análise , Manipulação de Alimentos/instrumentação , Frutas/efeitos dos fármacos , Pasteurização , Vitis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...