Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 247: 110043, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151780

RESUMO

Lutein and zeaxanthin are highly concentrated at the central region of the human retina, forming a distinct yellow spot known as the macula lutea. The delivery and retention of the macular pigment carotenoids in the macula lutea involves many proteins, but their exact roles remain incompletely understood. In our study, we examined the distribution of the twelve known macular carotenoid-related proteins within the human macula and the underlying retinal pigment epithelium (RPE) using both fluorescence and Raman modes on our confocal resonance Raman microscope. Additionally, we assessed protein and gene expression through Western blot analysis and a single-cell RNA sequencing database. Our findings revealed that GSTP1, BCO2, and Aster-B exhibited distribution patterns similar to the macular carotenoids, with higher expression levels within the macular region compared to the periphery, while SR-BI and ABCA1 did not exhibit specific distribution patterns within the macula or RPE. Interestingly, LIPC, SR-BI's partner, accumulated specifically in the sub-foveal RPE. All three of these carotenoid transport proteins were found to be highly expressed in the RPE. These results offer valuable insights into the roles these proteins play in the formation of the macula lutea.


Assuntos
Carotenoides , Macula Lutea , Microscopia Confocal , Microscopia de Fluorescência , Epitélio Pigmentado da Retina , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Epitélio Pigmentado da Retina/metabolismo , Carotenoides/metabolismo , Macula Lutea/metabolismo , Western Blotting , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Pigmento Macular/metabolismo , Adulto , Proteínas do Olho/metabolismo
2.
Exp Eye Res ; 229: 109429, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863431

RESUMO

The macular carotenoids lutein and zeaxanthin are taken up from the bloodstream into the human retina through a selective process, for which the HDL cholesterol receptor scavenger receptor BI (SR-BI) in the cells of retinal pigment epithelium (RPE) is thought to be a key mediator. However, the mechanism of SR-BI-mediated selective uptake of macular carotenoids is still not fully understood. Here, we investigate possible mechanisms using biological assays and cultured HEK293 cells, a cell line without endogenous SR-BI expression. Binding affinities between SR-BI and various carotenoids were measured by surface plasmon resonance (SPR) spectroscopy, which shows that SR-BI cannot bind lutein or zeaxanthin specifically. Overexpression of SR-BI in HEK293 cells results in more lutein and zeaxanthin taken up than ß-carotene, and this effect can be eliminated by an SR-BI mutant (C384Y) whose cholesterol uptake tunnel is blocked. Next, we determined the effects of HDL and hepatic lipase (LIPC), SR-BI's partners in HDL cholesterol transport, on SR-BI-mediated carotenoid uptake. HDL addition dramatically reduced lutein, zeaxanthin, and ß-carotene in HEK293 cells expressing SR-BI, but the cellular lutein and zeaxanthin are higher than ß-carotene. LIPC addition increases the uptake of all three carotenoids in HDL-treated cells, and promotes the transport of lutein and zeaxanthin better than ß-carotene. Our results suggest that SR-BI and its HDL cholesterol partner HDL and LIPC may be involved in the selective uptake of macular carotenoids.


Assuntos
Carotenoides , Luteína , Humanos , beta Caroteno , Carotenoides/metabolismo , Antígenos CD36 , Colesterol , HDL-Colesterol/metabolismo , Células HEK293 , Luteína/farmacologia , Receptores Depuradores/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Zeaxantinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA