Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 9(4): 2046-2060, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847091

RESUMO

Urbanization is driving environmental change on a global scale, creating novel environments for wildlife to colonize. Through a combination of stochastic and selective processes, urbanization is also driving evolutionary change. For instance, difficulty in traversing human-modified landscapes may isolate newly established populations from rural sources, while novel selective pressures, such as altered disease risk, toxicant exposure, and light pollution, may further diverge populations through local adaptation. Assessing the evolutionary consequences of urban colonization and the processes underlying them is a principle aim of urban evolutionary ecology. In the present study, we revisited the genetic effects of urbanization on red foxes (Vulpes vulpes) that colonized Zurich, Switzerland. Through use of genome-wide single nucleotide polymorphisms and microsatellite markers linked to the major histocompatibility complex (MHC), we expanded upon a previous neutral microsatellite study to assess population structure, characterize patterns of genetic diversity, and detect outliers associated with urbanization. Our results indicated the presence of one large evolutionary cluster, with substructure evident between geographic sampling areas. In urban foxes, we observed patterns of neutral and functional diversity consistent with founder events and reported increased differentiation between populations separated by natural and anthropogenic barriers. We additionally reported evidence of selection acting on MHC-linked markers and identified outlier loci with putative gene functions related to energy metabolism, behavior, and immunity. We concluded that demographic processes primarily drove patterns of diversity, with outlier tests providing preliminary evidence of possible urban adaptation. This study contributes to our overall understanding of urban colonization ecology and emphasizes the value of combining datasets when examining evolutionary change in an increasingly urban world.

2.
PLoS Biol ; 15(1): e1002592, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28125583

RESUMO

In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change.


Assuntos
Adaptação Fisiológica/genética , Arvicolinae/anatomia & histologia , Arvicolinae/genética , Evolução Biológica , Tamanho Corporal/genética , Aptidão Genética , Seleção Genética , Animais , Cruzamento , Variação Genética , Reprodução/genética , Estações do Ano , Fatores de Tempo
3.
Mol Phylogenet Evol ; 69(3): 581-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23906599

RESUMO

Introgression of genes through hybridization has been proposed to be an important driver of speciation, but in animals this has been shown only in relatively few cases until recently. Additionally, introgressive hybridization among non-sister species leads to a change in the gene tree topology of the concerned loci and thus complicates phylogenetic reconstruction. However, such cases of ancient introgression have been very difficult to demonstrate in birds. Here, we present such an example in an island bird subspecies, the Genovesa mockingbird (Mimus parvulus bauri). We assessed phylogenetic relationships and population structure among mockingbirds of the Galápagos archipelago using mitochondrial and nuclear DNA sequences, autosomal microsatellites, and morphological measurements. Mitochondrial haplotypes of Genovesa mockingbirds clustered closely with the haplotypes from two different species, San Cristóbal (M. melanotis) and Española (M. macdonaldi) mockingbirds. The same pattern was found for some haplotypes of two nuclear gene introns, while the majority of nuclear haplotypes of Genovesa mockingbirds were shared with other populations of the same species (M. parvulus). At 26 autosomal microsatellites, Genovesa mockingbirds grouped with other M. parvulus populations. This pattern shows that Genovesa mockingbirds contain mitochondria and some autosomal alleles that have most likely introgressed from M. melanotis into a largely M. parvulus background, making Genovesa mockingbirds a lineage of mixed ancestry, possibly undergoing speciation. Consistent with this hypothesis, mockingbirds on Genovesa are more clearly differentiated morphologically from other M. parvulus populations than M. melanotis is from M. parvulus.


Assuntos
Evolução Molecular , Genética Populacional , Passeriformes/classificação , Filogenia , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Equador , Haplótipos , Hibridização Genética , Repetições de Microssatélites , Passeriformes/anatomia & histologia , Passeriformes/genética , Análise de Sequência de DNA
4.
Mitochondrial DNA ; 24(5): 596-601, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23521599

RESUMO

Capturing wild animals can be time consuming and difficult or even impractical. Noninvasive sampling is potentially a cost-effective and efficient means to monitor wild animals, thereby avoiding the need of capture and disturb species in the wild. On the basis of the morphological and genetic analyses of owl pellet contents, a so far undetected European snow vole (Chionomys nivalis) population was discovered in the Sierra Segura mountain range (Southern Spain). The mtDNA sequence from the newly discovered haplotype was compared with sequences from vole populations of the Sierra Nevada and Sierra Peñalara mountain ranges (Spain) and from Churwalden (Switzerland). The nine recovered haplotypes clustered in four distinct lineages according to their geographical origin. The vole sequence from the Sierra Segura owl pellet belonged to a new haplotype, constituting a new lineage. The evolutionary divergence between sequences from the Sierra Segura and other Spanish populations was higher than that among other Spanish haplotypes. The new snow vole haplotype from this new locality duplicates the number of occurrence sites of this critically endangered species in Southern Spain, which is of great interest for further conservation and management plans of the European snow vole in the most southwestern area of its entire distribution range.


Assuntos
Arvicolinae/classificação , Arvicolinae/genética , Animais , Animais Selvagens , Arvicolinae/anatomia & histologia , DNA Mitocondrial/genética , Comportamento de Retorno ao Território Vital , Região de Controle de Locus Gênico/genética , Mandíbula/anatomia & histologia , Filogenia , Polimorfismo de Nucleotídeo Único , Espanha , Dente/anatomia & histologia
5.
Mol Ecol Resour ; 11(5): 835-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21457481

RESUMO

Comparing Y-chromosomal and mitochondrial haplotype variation is a promising approach to independently investigate paternal and maternal evolutionary histories in wild mammal populations. However, the difficulty of developing male-specific genetic markers, because of its distinctive genetic architecture and the general low level of polymorphisms observed on the Y chromosome, hampers usually an effective application of this approach. Here, we present a further method of the established Y chromosome conserved anchored tagged sequences strategy to develop Y-chromosomal markers by screening introns of male-specific region (MSY) genes for sequence polymorphisms. By applying long-template PCR using target species-specific primers, adequate sequence information of several kb in size can be obtained. We applied this method in the snow vole (Chionomys nivalis) and obtained 12.4 kb of male-specific sequence data for nine males representing four populations in the Swiss Alps. A total of 28 single nucleotide polymorphisms, four indels (> 1 bp) and one polymorphic microsatellite were identified in introns of the SMCY and DBY genes. Based on this information, we developed a Y-chromosomal genotyping assay and identified four different paternal lineages within one local snow vole population. The method we present is straightforward and as such will probably be suitable to detect adequate Y-chromosomal diversity in a wide range of mammalian species.


Assuntos
Arvicolinae/genética , Variação Genética , Reação em Cadeia da Polimerase/métodos , Cromossomo Y/genética , Animais , Sequência de Bases , Biologia Computacional , Primers do DNA/genética , Mutação INDEL/genética , Masculino , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Suíça
6.
Mol Ecol Resour ; 10(3): 409-20, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-21565040

RESUMO

Tracing maternal and paternal lineages independently to explore breeding systems and dispersal strategies in natural populations has been high on the wish-list of evolutionary biologists. As males are the heterogametic sex in mammals, such sex-specific patterns can be indirectly observed when Y chromosome polymorphism is combined with mitochondrial sequence information. Over the past decade, Y-chromosomal markers applied to human populations have revealed remarkable differences in the demographic history and behaviour between the sexes. However, with a few exceptions, genetic data tracing the paternal line are lacking in most other mammalian species. This deficit can be attributed to the difficulty of developing Y-specific genetic markers in non-model organisms and the general low levels of polymorphisms observed on the Y chromosome. Here, we present an overview of the currently employed strategies for developing paternal markers in mammals. Moreover, we review the practical feasibility and requirements of various methodological strategies and highlight their future prospects when combined with new molecular techniques such as next generation sequencing.

7.
Trends Ecol Evol ; 22(12): 634-42, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17988758

RESUMO

Museums and other natural history collections (NHC) worldwide house millions of specimens. With the advent of molecular genetic approaches these collections have become the source of many fascinating population studies in conservation genetics that contrast historical with present-day genetic diversity. Recent developments in molecular genetics and genomics and the associated statistical tools have opened up the further possibility of studying evolutionary change directly. As we discuss here, we believe that NHC specimens provide a largely underutilized resource for such investigations. However, because DNA extracted from NHC samples is degraded, analyses of such samples are technically demanding and many potential pitfalls exist. Thus, we propose a set of guidelines that outline the steps necessary to begin genetic investigations using specimens from NHC.


Assuntos
Genética Populacional/métodos , Museus , Animais , Evolução Biológica , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...