Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protein Pept Sci ; 21(1): 36-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30887921

RESUMO

Thaumatin-like proteins (TLPs) are a highly complex protein family associated with host defense and developmental processes in plants, animals, and fungi. They are highly diverse in angiosperms, for which they are classified as the PR-5 (Pathogenesis-Related-5) protein family. In plants, TLPs have a variety of properties associated with their structural diversity. They are mostly associated with responses to biotic stresses, in addition to some predicted activities under drought and osmotic stresses. The present review covers aspects related to the structure, evolution, gene expression, and biotechnological potential of TLPs. The efficiency of the discovery of new TLPs is below its potential, considering the availability of omics data. Furthermore, we present an exemplary bioinformatics annotation procedure that was applied to cowpea (Vigna unguiculata) transcriptome, including libraries of two tissues (root and leaf), and two stress types (biotic/abiotic) generated using different sequencing approaches. Even without using genomic sequences, the pipeline uncovered 56 TLP candidates in both tissues and stresses. Interestingly, abiotic stress (root dehydration) was associated with a high number of modulated TLP isoforms. The nomenclature used so far for TLPs was also evaluated, considering TLP structure and possible functions identified to date. It is clear that plant TLPs are promising candidates for breeding purposes and for plant transformation aiming a better performance under biotic and abiotic stresses. The development of new therapeutic drugs against human fungal pathogens also deserves attention. Despite that, applications derived from TLP molecules are still below their potential, as it is evident in our review.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Vigna/genética , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Biologia Computacional/métodos , Desidratação , Secas , Aromatizantes/química , Aromatizantes/farmacologia , Pressão Osmótica , Filogenia , Melhoramento Vegetal/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/classificação , Proteínas de Plantas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Transcriptoma , Vigna/metabolismo
2.
Curr Protein Pept Sci ; 18(4): 323-334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27455971

RESUMO

The discovery of novel plant resistance (R) genes (including their homologs and analogs) opened interesting possibilities for controlling plant diseases caused by several pathogens. However, due to environmental pressure and high selection operated by pathogens, several crop plants have lost specificity, broad-spectrum or durability of resistance. On the other hand, the advances in plant genome sequencing and biotechnological approaches, combined with the increasing knowledge on Rgenes have provided new insights on their applications for plant genetic breeding, allowing the identification and implementation of novel and efficient strategies that enhance or optimize their use for efficiently controlling plant diseases. The present review focuses on main perspectives of application of R-genes and its co-players for the acquisition of resistance to pathogens in cultivated plants, with emphasis on biotechnological inferences, including transgenesis, cisgenesis, directed mutagenesis and gene editing, with examples of success and challenges to be faced.


Assuntos
Proteínas de Arabidopsis/imunologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Plantas/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas de Arabidopsis/genética , Biotecnologia/métodos , Sistemas CRISPR-Cas , Edição de Genes/métodos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mutagênese Sítio-Dirigida , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas/imunologia , Plantas/microbiologia , Plantas/virologia , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
3.
Curr Protein Pept Sci ; 18(4): 294-310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27455974

RESUMO

Plants exhibit sensitive mechanisms to respond to environmental stresses, presenting some specific and non-specific reactions when attacked by pathogens, including organisms from different classes and complexity, as viroids, viruses, bacteria, fungi and nematodes. A crucial step to define the fate of the plant facing an invading pathogen is the activation of a compatible Resistance (R) gene, the focus of the present review. Different aspects regarding R-genes and their products are discussed, including pathogen recognition mechanisms, signaling and effects on induced and constitutive defense processes, splicing and post transcriptional mechanisms involved. There are still countless challenges to the complete understanding of the mechanisms involving R-genes in plants, in particular those related to the interactions with other genes of the pathogen and of the host itself, their regulation, acting mechanisms at transcriptional and post-transcriptional levels, as well as the influence of other types of stress over their regulation. A magnification of knowledge is expected when considering the novel information from the omics and systems biology.


Assuntos
Proteínas de Arabidopsis/imunologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/imunologia , Genoma de Planta , Doenças das Plantas/imunologia , Plantas/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Etilenos/biossíntese , Etilenos/imunologia , Dosagem de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas/microbiologia , Plantas/parasitologia , Plantas/virologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
BioData Min ; 5(1): 1, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22297131

RESUMO

BACKGROUND: Keeping up-to-date with bioscience literature is becoming increasingly challenging. Several recent methods help meet this challenge by allowing literature search to be launched based on lists of abstracts that the user judges to be 'interesting'. Some methods go further by allowing the user to provide a second input set of 'uninteresting' abstracts; these two input sets are then used to search and rank literature by relevance. In this work we present the service 'Caipirini' (http://caipirini.org) that also allows two input sets, but takes the novel approach of allowing ranking of literature based on one or more sets of genes. RESULTS: To evaluate the usefulness of Caipirini, we used two test cases, one related to the human cell cycle, and a second related to disease defense mechanisms in Arabidopsis thaliana. In both cases, the new method achieved high precision in finding literature related to the biological mechanisms underlying the input data sets. CONCLUSIONS: To our knowledge Caipirini is the first service enabling literature search directly based on biological relevance to gene sets; thus, Caipirini gives the research community a new way to unlock hidden knowledge from gene sets derived via high-throughput experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...