Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1237565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638045

RESUMO

Immunotherapies are a key therapeutic strategy to fight cancer. Diverse approaches are used to activate tumor-directed immunity and to overcome tumor immune escape. The dynamic interplay between tumor cells and their tumor(immune)microenvironment (T(I)ME) poses a major challenge to create appropriate model systems. However, those model systems are needed to gain novel insights into tumor (immune) biology and a prerequisite to accurately develop and test immunotherapeutic approaches which can be successfully translated into clinical application. Several model systems have been established and advanced into so-called patient avatars to mimic the patient´s tumor biology. All models have their advantages but also disadvantages underscoring the necessity to pay attention in defining the rationale and requirements for which the patient avatar will be used. Here, we briefly outline the current state of tumor model systems used for tumor (immune)biological analysis as well as evaluation of immunotherapeutic agents. Finally, we provide a recommendation for further development to make patient avatars a complementary tool for testing and predicting immunotherapeutic strategies for personalization of tumor therapies.


Assuntos
Imunoterapia , Neoplasias , Humanos , Modelos Biológicos , Evasão Tumoral , Neoplasias/terapia
2.
Front Immunol ; 14: 1157397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449210

RESUMO

Introduction: Immune checkpoint inhibitors (ICI), e.g., targeting programmed cell death protein 1-ligand 1 (PD-L1) or its receptor PD-1, have markedly improved the therapy of many cancers but so far failed in pancreatic ductal adenocarcinoma (PDAC). Macrophages represent one of the most abundant immune cell populations within the tumor microenvironment (TME) of PDAC being able to either support or restrain tumor progression depending on their phenotype. To better understand treatment failure of PD-L1/PD-1 inhibitors in PDAC, this study examined PD-L1 expression in the context of a dynamic TME in PDAC with a particular focus on the impact of macrophages. Methods: Formalin-fixed and paraffin embedded tissue samples of primary PDAC tissues and corresponding liver metastases were used for immunohistochemical analyses. Serial sections were stained with antibodies detecting Pan-Cytokeratin, CD68, CD163, CD8, and PD-L1.To investigate whether the PD-1/PD-L1 axis and macrophages contribute to immune escape of PDAC cells, a stroma enriched 3D spheroid coculture model was established in vitro, using different PDAC cell lines and macrophages subtypes as well as CD8+ T cells. Functional and flow cytometry analyses were conducted to characterize cell populations. Results: Immunohistochemical analyses revealed that PD-L1 is mainly expressed by stroma cells, including macrophages and not PDAC cells in primary PDAC tissues and corresponding liver metastases. Notably, high local abundance of macrophages and strong PD-L1 staining were commonly found at invasion fronts of tumoral lesions between CD8+ T cells and tumor cells. In order to investigate whether PD-L1 expressing macrophages impact the response of PDAC cells to treatment with PD-L1/PD-1 inhibitors, we developed a spheroid model comprising two different PDAC cell lines and different ratios of in vitro differentiated primary M1- or M2-like polarized macrophages. In line with our in situ findings, high PD-L1 expression was observed in macrophages rather than PDAC cells, which was further increased by the presence of PDAC cells. The effector phenotype of co-cultured CD8+ T cells exemplified by expression of activation markers and release of effector molecules was rather enhanced by PDAC macrophage spheroids, particularly with M1-like macrophages compared to mono-culture spheroids. However, this was not associated with enhanced PDAC cell death. ICI treatment with either Durvalumab or Pembrolizumab alone or in combination with Gemcitabine hardly affected the effector phenotype of CD8+ T cells along with PDAC cell death. Thus, despite strong PD-L1 expression in macrophages, ICI treatment did not result in an enhanced activation and cytotoxic phenotype of CD8+ T cells. Conclusion: Overall, our study revealed novel insights into the interplay of PDAC cells and macrophages in the presence of ICI.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral
3.
Int J Cancer ; 151(9): 1586-1601, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666536

RESUMO

Epigenetic dysregulation is an important feature of colorectal cancer (CRC). Combining epigenetic drugs with other antineoplastic agents is a promising treatment strategy for advanced cancers. Here, we exploited the concept of synthetic lethality to identify epigenetic targets that act synergistically with histone deacetylase (HDAC) inhibitors to reduce the growth of CRC. We applied a pooled CRISPR-Cas9 screen using a custom sgRNA library directed against 614 epigenetic regulators and discovered that knockout of the euchromatic histone-lysine N-methyltransferases 1 and 2 (EHMT1/2) strongly enhanced the antiproliferative effect of clinically used HDAC inhibitors. Using tissue microarrays from 1066 CRC samples with different tumor stages, we showed that low EHMT2 protein expression is predominantly found in advanced CRC and associated with poor clinical outcome. Cotargeting of HDAC and EHMT1/2 with specific small molecule inhibitors synergistically reduced proliferation of CRC cell lines. Mechanistically, we used a high-throughput Western blot assay to demonstrate that both inhibitors elicited distinct cellular mechanisms to reduce tumor growth, including cell cycle arrest and modulation of autophagy. On the epigenetic level, the compounds increased H3K9 acetylation and reduced H3K9 dimethylation. Finally, we used a panel of patient-derived CRC organoids to show that HDAC and EHMT1/2 inhibition synergistically reduced tumor viability in advanced models of CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Acetilação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos
4.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638420

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.

5.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439389

RESUMO

To date, extensive efforts to harness immunotherapeutic strategies for the treatment of pancreatic ductal adenocarcinoma (PDAC) have yielded disappointing results in clinical trials. These strategies mainly focused on cancer vaccines and immune checkpoint inhibitors alone or in combination with chemotherapeutic or targeted agents. However, the growing preclinical and clinical data sets from these efforts have established valuable insights into the immunological characteristics of PDAC biology. Most notable are the immunosuppressive role of the tumour microenvironment (TME) and PDAC's characteristically poor immunogenicity resulting from tumour intrinsic features. Moreover, PDAC tumour heterogeneity has been increasingly well characterized and may additionally limit a "one-fits-all" immunotherapeutic strategy. In this review, we first outline mechanisms of immunosuppression and immune evasion in PDAC. Secondly, we summarize recently published data on preclinical and clinical efforts to establish immunotherapeutic strategies for the treatment of PDAC including diverse combinatorial treatment approaches aiming at overcoming this resistance towards immunotherapeutic strategies. Particularly, these combinatorial treatment approaches seek to concomitantly increase PDAC antigenicity, boost PDAC directed T-cell responses, and impair the immunosuppressive character of the TME in order to allow immunotherapeutic agents to unleash their full potential. Eventually, the thorough understanding of the currently available data on immunotherapeutic treatment strategies of PDAC will enable researchers and clinicians to develop improved treatment regimens and to design innovative clinical trials to overcome the pronounced immunosuppression of PDAC.

6.
Nat Commun ; 10(1): 2197, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097693

RESUMO

In colorectal cancer (CRC), aberrant Wnt signalling is essential for tumorigenesis and maintenance of cancer stem cells. However, how other oncogenic pathways converge on Wnt signalling to modulate stem cell homeostasis in CRC currently remains poorly understood. Using large-scale compound screens in CRC, we identify MEK1/2 inhibitors as potent activators of Wnt/ß-catenin signalling. Targeting MEK increases Wnt activity in different CRC cell lines and murine intestine in vivo. Truncating mutations of APC generated by CRISPR/Cas9 strongly synergize with MEK inhibitors in enhancing Wnt responses in isogenic CRC models. Mechanistically, we demonstrate that MEK inhibition induces a rapid downregulation of AXIN1. Using patient-derived CRC organoids, we show that MEK inhibition leads to increased Wnt activity, elevated LGR5 levels and enrichment of gene signatures associated with stemness and cancer relapse. Our study demonstrates that clinically used MEK inhibitors inadvertently induce stem cell plasticity, revealing an unknown side effect of RAS pathway inhibition.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Antineoplásicos/uso terapêutico , Biópsia , Sistemas CRISPR-Cas/genética , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Plasticidade Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Intestinos/citologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...