Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958068

RESUMO

The snail P. glabra is an endemic species in deep-sea chemosynthetic ecosystems of the Northwest Pacific Ocean. To obtain more genetic information on this species and provide the basis for subsequent whole-genome map construction, a genome survey was performed on this snail from the hydrothermal vent of Okinawa Trough. The genomic size of P. glabra was estimated to be 1.44 Gb, with a heterozygosity of 1.91% and a repeated sequence content of 69.80%. Based on the sequencing data, a draft genome of 1.32 Gb was assembled. Transposal elements (TEs) accounted for 40.17% of the entire genome, with DNA transposons taking the highest proportion. It was found that most TEs were inserted in the genome recently. In the simple sequence repeats, the dinucleotide motif was the most enriched microsatellite type, accounting for 53% of microsatellites. A complete mitochondrial genome of P. glabra with a total length of 16,268 bp was assembled from the sequencing data. After comparison with the published mitochondrial genome of Provanna sp. from a methane seep, 331 potential single nucleotide polymorphism (SNP) sites were identified in protein-coding genes (PCGs). Except for the cox1 gene, nad2, nad4, nad5, and cob genes are expected to be candidate markers for population genetic and phylogenetic studies of P. glabra and other deep-sea snails. Compared with shallow-water species, three mitochondrial genes of deep-sea gastropods exhibited a higher evolutionary rate, indicating strong selection operating on mitochondria of deep-sea species. This study provides insights into the genome characteristics of P. glabra and supplies genomic resources for further studies on the adaptive evolution of the snail in extreme deep-sea chemosynthetic environments.

2.
Materials (Basel) ; 16(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37297103

RESUMO

Spark plasma sintering is a new technology for preparing ceramic materials. In this article, a thermal-electric-mechanical coupled model is used to simulate the spark plasma sintering process of boron carbide. The solution of the thermal-electric part was based on the charge conservation equation and the energy conservation equation. A phenomenological constitutive model (Drucker-Prager Cap model) was used to simulate the densification process of boron carbide powder. To reflect the influence of temperature on sintering performance, the model parameters were set as functions of temperature. Spark plasma sintering experiments were conducted at four temperatures: 1500 °C, 1600 °C, 1700 °C, and 1800 °C, and the sintering curves were obtained. The parameter optimization software was integrated with the finite element analysis software, and the model parameters at different temperatures were obtained through the parameter inverse identification method by minimizing the difference between the experimental displacement curve and the simulated displacement curve. The Drucker-Prager Cap model was then incorporated into the coupled finite element framework to analyze the changes of various physical fields of the system over time during the sintering process.

3.
Biomed Res Int ; 2022: 8023779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36317112

RESUMO

Background: Rheumatoid arthritis (RA) is recognized as a chronic inflammatory disease featured by pathological synovial inflammation. Currently, the underlying pathophysiological mechanisms of RA remain unclear. In the study, we attempted to explore the underlying mechanisms of RA and provide potential targets for the therapy of RA via bioinformatics analysis. Methods: We downloaded four microarray datasets (GSE77298, GSE55235, GSE12021, and GSE55457) from the GEO database. Firstly, GSE77298 and GSE55457 were identified DEGs by the "limma" and "sva" packages of R software. Then, we performed GO, KEGG, and GSEA enrichment analyses to further analyze the function of DEGs. Hub genes were screened using LASSO analysis and SVM-RFE analysis. To further explore the differences of the expression of hub genes in healthy control and RA patient synovial tissues, we calculated the ROC curves and AUC. The expression levels of hub genes were verified in synovial tissues of normal and RA rats by qRT-PCR and western blot. Furthermore, the CIBERSORTx was implemented to assess the differences of infiltration in 22 immune cells between normal and RA synovial tissues. We explored the association between hub genes and infiltrating immune cells. Results: CRTAM, CXCL13, and LRRC15 were identified as RA's potential hub genes by machine learning and LASSO algorithms. In addition, we verified the expression levels of three hub genes in the synovial tissue of normal and RA rats by PCR and western blot. Moreover, immune cell infiltration analysis showed that plasma cells, T follicular helper cells, M0 macrophages, M1 macrophages, and gamma delta T cells may be engaged in the development and progression of RA. Conclusions: In brief, our study identified and validated that three hub genes CRTAM, CXCL13, and LRRC15 might involve in the pathological development of RA, which could provide novel perspectives for the diagnosis and treatment with RA.


Assuntos
Artrite Reumatoide , Redes Reguladoras de Genes , Ratos , Animais , Ontologia Genética , Redes Reguladoras de Genes/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Artrite Reumatoide/metabolismo , Biologia Computacional
4.
Medicine (Baltimore) ; 101(38): e30701, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36197183

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic disease which is characterized by a circadian variation of key clinical symptoms and findings, with prominent joint swelling, stiffness and pain occurring in the early morning and light clinical symptoms during the day. Chrono-moxibustion is carried out at different time, which could result in dissimilar therapeutic effects. However, its efficacy has seldom been systematically demonstrated and few studies have reported that Chrono-moxibustion may regulate the circadian rhythm of RA. We therefore designed a randomized trial to explore the effective difference of Chrono-moxibustion in RA treatment, as well as to study its influence on circadian rhythm of RA patients. METHODS: This study is a randomized controlled trial involving 120 participants, and a total of 90 eligible RA patients will be randomly allocated to three groups in a 1:1:1 ratio as moxibustion at 7 to 9 am, moxibustion at 5 to 7 pm, and waiting list group, meanwhile, 30 healthy people will be divided into the control group. Patients in moxibustion groups will be treated for 30 minutes per session, 3 times a week, lasting 6 weeks. All of RA patients will be evaluated with questionnaires and laboratory tests before treatment, as well as 3 weeks, 6 weeks, and 3 months after treatment. One way analysis of variance (ANOVA) with multiple comparisons will be applied to identify differences more than two groups. Halberg cosiner software will be used to analysis the circadian rhythm. RESULTS: The results of this study will be published in a peer-reviewed journal. CONCLUSION: This study will provide evidence-based evidence for the effective difference of Chrono-moxibustion in RA treatment and its influence on circadian rhythm of RA patients.


Assuntos
Artrite Reumatoide , Moxibustão , Artrite Reumatoide/etiologia , Artrite Reumatoide/terapia , Doença Crônica , Ritmo Circadiano , Humanos , Moxibustão/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Am J Transl Res ; 14(9): 6751-6762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247278

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is considered to be a chronic immune disease pathologically characterized by synovial inflammation and bone destruction. At present, the potential pathogenesis of RA is still unclear. Hub genes are recognized to play a pivotal role in the occurrence and progression of RA. METHODS: Firstly, we attempted to screen hub genes that are associated with RA, to clarify the underlying pathological mechanisms of RA, and to offer potential treatment methods for RA. We acquired these datasets (GSE12021, GSE55235, and GSE55457) of RA patients and healthy samples from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were recognized via R software. Then, Gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were utilized to deeply explore the underlying biological functions and pathways closely associated with RA. In addition, a protein-protein interaction (PPI) network was built to further evaluate and screen for hub genes. Finally, on the basis of the results of PPI analysis, we confirmed the mRNA expression levels of five hub genes in the synovial tissue of rats modeled with RA. RESULTS: In the human microarray datasets, LCK, JAK2, SOCS3, STAT1, and EGFR were identified as hub genes associated with RA by bioinformatics analysis. Furthermore, we verified the differential expression levels of hub genes in rat synovial tissues via qRT-PCR (P < 0.05). CONCLUSIONS: Our findings suggest that the hub genes LCK, JAK2, SOCS3, STAT1, and EGFR might have vital roles in the progression of RA and may offer novel therapeutic treatments for RA.

6.
PeerJ ; 10: e13758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966925

RESUMO

Shrimps of the family Alvinocarididae, endemic species to deep sea chemosynthetic ecosystems, harbor epibiotic microbes on gills which probably play important roles in the survival of the shrimps. Among them, Alvinocaris longirostris and Shinkaicaris leurokolos occupy different ecological niches within the same hydrothermal vent in Okinawa Trough, and A. longirostris also exists in a methane seep of the South China Sea. In this study, full-length 16S rRNA sequences of the gill associated bacteria of two alvinocaridid species from different chemosynthetically ecological niches were first captured by single-molecule real-time sequencing. Totally, 120,792 optimized circular consensus sequences with ∼1,450 bp in length were obtained and clustered into 578 operational taxonomic units. Alpha diversity analysis showed seep A. longirostris had the highest species richness and evenness (average Chao1 = 213.68, Shannon = 3.39). Beta diversity analysis revealed that all samples were clearly divided into three groups, and microbial community of A. longirostris from seep and vent were more related than the other comparisons. By permutational multivariate analysis of variance, the most significant community compositional variance was detected between seep A. longirostris and vent S. leurokolos (R 2 = 0.731, P = 0.001). The taxon tags were further classified into 21 phyla, 40 classes, 89 orders, 124 families and 135 genera. Overall, the microbial communities were dominated by Campylobacteria and Gammaproteobacteria. Alphaproteobacteria, Bacteroidia, Verrucomicrobiae, Bacilli and other minor groups were also detected at lower abundance. Taxonomic groups recovered from the vent S. leurokolos samples were only dominated by Sulfurovaceae (94.06%). In comparison, gill-associated microbiota of vent A. longirostris consisted of more diverse sulfur-oxidizing bacteria, including Sulfurovaceae (69.21%), Thiotrichaceae (6.77%) and a putative novel Gammaproteobacteria group (14.37%), while in seep A. longirostris, Gammaproteobacteria un-group (44.01%) constituted the major component, following the methane-oxidizing bacteria Methylomonadaceae (19.38%), and Sulfurovaceae (18.66%). Therefore, the gill associated bacteria composition and abundance of alvinocaridid shrimps are closely related to the habitat heterogeneity and the selection of microbiota by the host. However, the interaction between these alvinocaridid shrimps and the epibiotic communities requires further study based on metagenome sequencing and fluorescence in situ hybridization.


Assuntos
Decápodes , Gammaproteobacteria , Microbiota , Humanos , Animais , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Crustáceos/genética , Bactérias/genética , Gammaproteobacteria/genética , Microbiota/genética
7.
Am J Transl Res ; 14(7): 4880-4897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958509

RESUMO

OBJECTIVE: The clinical symptoms of rheumatoid arthritis (RA) have significant circadian rhythms, with morning stiffness and joint pain. Moxibustion is effective in the treatment of RA, while the underlying therapeutic mechanisms remain limited. Thus, we explored whether moxibustion could adjust the circadian rhythm of RA by modulating the core clock genes CLOCK and BMAL1 at the molecular level. METHODS: 144 Sprague Dawley rats were randomly divided into four groups: control group (group A), model group (group B), 7-9 am moxibustion treatment group (group C), and 5-7 pm moxibustion treatment group (group D). Each group was divided into 6 time points (0 am, 4 am, 8 am, 12 N, 6 pm, and 8 pm) with an equal number of rats at each time point. Except for group A, all rats were injected with Freund's Complete Adjuvant (FCA) 0.15 ml on the right foot pad to establish the RA model. The rats of the two moxibustion treatment groups were respectively subjected to moxibustion at 7-9 am and 5-7 pm. After 3 weeks of treatment, the tissues were collected at 6 time points during the next 24 hours. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to test the mRNA expression of CLOCK and BMAL1 in the hypothalamus and synovial tissues. CLOCK and BMAL1 protein expression in synovial tissues were detected with western blot. RESULTS: Compared to group A, group B showed significantly down-regulated expression levels of CLOCK and BMLA1 at synovial tissue (P < 0.05), while no statistically significant difference was found in the hypothalamus (P > 0.05). The expression levels of CLOCK and BMLA1 were up-regulated in the moxibustion treatment groups in different tissues, especially in synovial tissue (P < 0.05) compared to group B. Nevertheless, no difference was observed between groups C and D (P > 0.05). CONCLUSIONS: Moxibustion could treat RA by modulating clock core genes CLOCK and BMAL1 to regulate the circadian rhythm. However, there was no significant difference between the 7-9 am moxibustion treatment group and the 5-7 pm moxibustion treatment group. This study provides a basis for research on moxibustion in the treatment of RA.

8.
Materials (Basel) ; 14(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885359

RESUMO

In this study, TiN-TiB2-hBN composite ceramics were prepared via reactive hot pressing using TiN and amorphous B powders as raw materials. Different sintering temperatures and composition ratios were studied. The results show that the 70 vol% TiN-17.6 vol% TiB2-12.4 vol% hBN ceramic composites obtained ideal comprehensive properties at 1600 °C. The relative density, Vickers hardness, bending strength, and fracture toughness were 99%, 11 GPa, 521 MPa, and 4.22 MPa·m1/2, respectively. Densification was promoted by the highly active reaction product TiB2, and the structural defects formed in the grains. Meanwhile, the good interfacial bonding between TiN and TiB2 grains and the uniform dispersion of ultrafine hBN in the matrix contributed to the excellent bending strength. Moreover, the toughening mechanism of crack deflection and grain pull-out improved the fracture toughness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...