Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Nanobiomed Res ; 2(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35872804

RESUMO

In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study investigates how the interplay between biophysical and biochemical microenvironment cues influence phenotypic responses, including inflammation signatures, of primary human hepatocytes (PHH) cultured in a commercially available perfused bioreactor. A 3D printing-based alginate microwell system was designed to form thousands of hepatic spheroids in a scalable manner as a comparator 3D culture modality to the bioreactor. Soft, synthetic extracellular matrix (ECM) hydrogel scaffolds with biophysical properties mimicking features of liver were engineered to replace polystyrene scaffolds, and the biochemical microenvironment was modulated with a defined set of growth factors and signaling modulators. The supplemented media significantly increased tissue density, albumin secretion, and CYP3A4 activity but also upregulated inflammatory markers. Basal inflammatory markers were lower for cells maintained in ECM hydrogel scaffolds or spheroid formats than polystyrene scaffolds, while hydrogel scaffolds exhibited the most sensitive response to inflammation as assessed by multiplexed cytokine and RNA-seq analyses. Together, these engineered 3D liver microenvironments provide insights for probing human liver functions and inflammatory response in vitro.

2.
Biofabrication ; 13(4)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34479229

RESUMO

Microphysiological systems (MPS), comprising human cell cultured in formats that capture features of the three-dimensional (3D) microenvironments of native human organs under microperfusion, are promising tools for biomedical research. Here we report the development of a mesoscale physiological system (MePS) enabling the long-term 3D perfused culture of primary human hepatocytes at scales of over 106cells per MPS. A central feature of the MePS, which employs a commercially-available multiwell bioreactor for perfusion, is a novel scaffold comprising a dense network of nano- and micro-porous polymer channels, designed to provide appropriate convective and diffusive mass transfer of oxygen and other nutrients while maintaining physiological values of shear stress. The scaffold design is realized by a high resolution stereolithography fabrication process employing a novel resin. This new culture system sustains mesoscopic hepatic tissue-like cultures with greater hepatic functionality (assessed by albumin and urea synthesis, and CYP3A4 activity) and lower inflammation markers compared to comparable cultures on the commercial polystyrene scaffold. To illustrate applications to disease modeling, we established an insulin-resistant phenotype by exposing liver cells to hyperglycemic and hyperinsulinemic media. Future applications of the MePS include the co-culture of hepatocytes with resident immune cells and the integration with multiple organs to model complex liver-associated diseases.


Assuntos
Técnicas de Cultura de Células , Hepatócitos , Alicerces Teciduais , Humanos , Fígado , Estereolitografia
3.
J Pain Palliat Care Pharmacother ; 35(1): 38-42, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32960657

RESUMO

Treatment of Central Pain Syndrome (CPS) is known to be extremely challenging. Current therapies are unsatisfactory as patients report only mild to moderate pain relief. We report a case of using ketamine as a patient-controlled analgesia (PCA) for the treatment of CPS. A 58-year-old male with CPS presented with severe generalized body pain refractory to multiple pharmacological interventions. He was started on a basal infusion rate at 0.3 mg/kg/h with a ketamine PCA bolus of 10 mg with a 10-minute lockout period. Over the next 7 days, the basal infusion rate was titrated up to 2.1 mg/kg/h relative to the number of times the patient pressed the PCA. At the end of the trial, the patient reported 0/10 pain with lightheadedness on the first day being the only side effect reported. He was discharged home with his regular pain regimen, with significant decrease in pain over the next few months. Rather than trying to establish a "one size fits all" protocol for ketamine infusions, this case illustrates a shift in pain management focus by allowing patients to self-titrate and demonstrates the potential for using ketamine PCA as a treatment option for CPS.


Assuntos
Analgesia Controlada pelo Paciente , Ketamina , Humanos , Infusões Intravenosas , Ketamina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Dor/tratamento farmacológico , Manejo da Dor , Medição da Dor , Dor Pós-Operatória/tratamento farmacológico
4.
Biomacromolecules ; 21(2): 566-580, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31846304

RESUMO

Expanding the toolkit of modular and functional synthetic material systems for biomimetic extracellular matrices (ECMs) is needed for achieving more predictable and characterizable cell culture. In the present study, we engineered a synthetic hydrogel system incorporating poly(γ-propargyl-l-glutamate) (PPLG), an N-carboxy anhydride polypeptide with a unique α-helical secondary structure. PPLG macromers were cross-linked into poly(ethylene glycol) (PEG) networks to form hybrid polypeptide-PEG hydrogels. We compared the properties of PPLG-PEG to systems where the PPLG macromers were replaced with 8-arm PEG or poly(γ-propargyl-d,l-glutamate) (PPDLG), which has a flexible random-coil conformation. We evaluated each hydrogel system as synthetic ECMs for two-dimensional (2D) endothelial cell culture. Cells on PPLG-PEG displayed superior attachment and spreading at comparable adhesion ligand incorporation concentrations, demonstrating the unique benefit of combining the more rigid and hydrophobic α-helical PPLG within the more flexible and hydrophilic PEG matrix. The modular PPLG macromer is a promising building block for developing other types of PPLG-based hydrogels with favorable and tunable properties.


Assuntos
Técnicas de Cultura de Células/instrumentação , Matriz Extracelular/química , Hidrogéis/química , Peptídeos/química , Adesão Celular , Técnicas de Cultura de Células/métodos , Células Cultivadas , Recuperação de Fluorescência Após Fotodegradação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células-Tronco Pluripotentes Induzidas/citologia , Permeabilidade
5.
Nat Commun ; 8: 15509, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593951

RESUMO

Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin ß1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the ß1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor ß1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/metabolismo , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Epitélio/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Integrina alfa3beta1/metabolismo , Laminina/metabolismo , Glândulas Mamárias Humanas/citologia , Metaloproteinase 2 da Matriz/metabolismo , Membranas Artificiais , Camundongos , Peritônio/metabolismo , Ligação Proteica , Transdução de Sinais
6.
Biomaterials ; 130: 90-103, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371736

RESUMO

Methods to parse paracrine epithelial-stromal communication networks are a vital need in drug development, as disruption of these networks underlies diseases ranging from cancer to endometriosis. Here, we describe a modular, synthetic, and dissolvable extracellular matrix (MSD-ECM) hydrogel that fosters functional 3D epithelial-stromal co-culture, and that can be dissolved on-demand to recover cells and paracrine signaling proteins intact for subsequent analysis. Specifically, synthetic polymer hydrogels, modified with cell-interacting adhesion motifs and crosslinked with peptides that include a substrate for cell-mediated proteolytic remodeling, can be rapidly dissolved by an engineered version of the microbial transpeptidase Sortase A (SrtA) if the crosslinking peptide includes a SrtA substrate motif and a soluble second substrate. SrtA-mediated dissolution affected only 1 of 31 cytokines and growth factors assayed, whereas standard protease degradation methods destroyed about half of these same molecules. Using co-encapsulated endometrial epithelial and stromal cells as one model system, we show that the dynamic cytokine and growth factor response of co-cultures to an inflammatory cue is richer and more nuanced when measured from SrtA-dissolved gel microenvironments than from the culture supernate. This system employs accessible, reproducible reagents and facile protocols; hence, has potential as a tool in identifying and validating therapeutic targets in complex diseases.


Assuntos
Células Epiteliais/citologia , Matriz Extracelular/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Comunicação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Cisteína Endopeptidases/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Matriz Extracelular/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-1beta/metabolismo , Cinética , Peptídeos/química , Solubilidade , Células Estromais/citologia , Células Estromais/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 111(16): 5908-13, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24706882

RESUMO

The dynamic interplay between the extracellular matrix and embryonic stem cells (ESCs) constitutes one of the key steps in understanding stem cell differentiation in vitro. Here we report a biologically-active laminin-111 fragment generated by matrix metalloproteinase 2 (MMP2) processing, which is highly up-regulated during differentiation. We show that the ß1-chain-derived fragment interacts via α3ß1-integrins, thereby triggering the down-regulation of MMP2 in mouse and human ESCs. Additionally, the expression of MMP9 and E-cadherin is up-regulated in mouse ESCs--key players in the epithelial-to-mesenchymal transition. We also demonstrate that the fragment acts through the α3ß1-integrin/extracellular matrix metalloproteinase inducer complex. This study reveals a previously unidentified role of laminin-111 in early stem cell differentiation that goes far beyond basement membrane assembly and a mechanism by which an MMP2-cleaved laminin fragment regulates the expression of E-cadherin, MMP2, and MMP9.


Assuntos
Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal , Laminina/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Basigina/metabolismo , Sítios de Ligação , Caderinas/metabolismo , Adesão Celular , Células-Tronco Embrionárias/citologia , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Humanos , Integrina alfa3beta1/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Ligação Proteica , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo
8.
ACS Chem Biol ; 8(5): 923-9, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23477340

RESUMO

Elevation of reactive oxygen species (ROS) levels has been observed in many cancer cells relative to nontransformed cells, and recent reports have suggested that small-molecule enhancers of ROS may selectively kill cancer cells in various in vitro and in vivo models. We used a high-throughput screening approach to identify several hundred small-molecule enhancers of ROS in a human osteosarcoma cell line. A minority of these compounds diminished the viability of cancer cell lines, indicating that ROS elevation by small molecules is insufficient to induce death of cancer cell lines. Three chemical probes (BRD5459, BRD56491, BRD9092) are highlighted that most strongly elevate markers of oxidative stress without causing cell death and may be of use in a variety of cellular settings. For example, combining nontoxic ROS-enhancing probes with nontoxic doses of L-buthionine sulfoximine, an inhibitor of glutathione synthesis previously studied in cancer patients, led to potent cell death in more than 20 cases, suggesting that even nontoxic ROS-enhancing treatments may warrant exploration in combination strategies. Additionally, a few ROS-enhancing compounds that contain sites of electrophilicity, including piperlongumine, show selective toxicity for transformed cells over nontransformed cells in an engineered cell-line model of tumorigenesis. These studies suggest that cancer cell lines are more resilient to chemically induced increases in ROS levels than previously thought and highlight electrophilicity as a property that may be more closely associated with cancer-selective cell death than ROS elevation.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Sondas Moleculares/metabolismo , Sondas Moleculares/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Butionina Sulfoximina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dioxolanos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Sondas Moleculares/química , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Estresse Oxidativo/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...