Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1397765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711609

RESUMO

Calreticulin (CRT) is a calcium-binding endoplasmic reticulum (ER) protein that has been identified for multiple cellular processes, including protein folding, regulation of gene expression, calcium (Ca2+) storage and signaling, regeneration, and stress responses. However, the lack of information about this protein family in tomato species highlights the importance of functional characterization. In the current study, 21 CRTs were identified in four tomato species using the most recent genomic data and performed comprehensive bioinformatics and SlCRT expression in various tissues and treatments. In the bioinformatics analysis, we described the physiochemical properties, phylogeny, subcellular positions, chromosomal location, promoter analysis, gene structure, motif distribution, protein structure and protein interaction. The phylogenetic analysis classified the CRTs into three groups, consensus with the gene architecture and conserved motif analyses. Protein structure analysis revealed that the calreticulin domain is highly conserved among different tomato species and phylogenetic groups. The cis-acting elements and protein interaction analysis indicate that CRTs are involved in various developmental and stress response mechanisms. The cultivated and wild tomato species exhibited similar gene mapping on chromosomes, and synteny analysis proposed that segmental duplication plays an important role in the evolution of the CRTs family with negative selection pressure. RNA-seq data analysis showed that SlCRTs were differentially expressed in different tissues, signifying the role of calreticulin genes in tomato growth and development. qRT-PCR expression profiling showed that all SlCRTs except SlCRT5 were upregulated under PEG (polyethylene glycol) induced drought stress and abscisic acid (ABA) treatment and SlCRT2 and SlCRT3 were upregulated under salt stress. Overall, the results of the study provide information for further investigation of the functional characterization of the CRT genes in tomato.

2.
Plant Physiol Biochem ; 210: 108589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593485

RESUMO

Carotenoids are important pigmented nutrients synthesized by tomato fruits during ripening. To reveal the molecular mechanism underlying carotenoid synthesis during tomato fruit ripening, we analyzed carotenoid metabolites and transcriptomes in six development stages of tomato fruits. A total of thirty different carotenoids were detected and quantified in tomato fruits from 10 to 60 DPA. Based on differential gene expression profiles and WGCNA, we explored several genes that were highly significant and negatively correlated with lycopene, all of which encode fasciclin-like arabinogalactan proteins (FLAs). The FLAs are involved in plant signal transduction, however the functional role of these proteins has not been studied in tomato. Genome-wide analysis revealed that cultivated and wild tomato species contained 18 to 22 FLA family members, clustered into four groups, and mainly evolved by means of segmental duplication. The functional characterization of FLAs showed that silencing of SlFLA1, 5, and 13 were found to contribute to the early coloration of tomato fruits, and the expression of carotenoid synthesis-related genes was up-regulated in fruits that changed phenotypically, especially in SlFLA13-silenced plants. Furthermore, the content of multiple carotenoids (including (E/Z)-phytoene, lycopene, γ-carotene, and α-carotene) was significantly increased in SlFLA13-silenced fruits, suggesting that SlFLA13 has a potential inhibitory function in regulating carotenoid synthesis in tomato fruits. The results of the present study broaden the idea of analyzing the biological functions of tomato FLAs and preliminary evidence for the inhibitory role of SlFLA13 in carotenoid synthesis in fruit, providing the theoretical basis and a candidate for improving tomato fruit quality.


Assuntos
Carotenoides , Frutas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Carotenoides/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Galactanos/metabolismo , Galactanos/biossíntese , Mucoproteínas/metabolismo , Mucoproteínas/genética
3.
Genes (Basel) ; 15(2)2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397174

RESUMO

Alfin-like (AL) proteins are an important class of transcription factor (TF) widely distributed in eukaryotes and play vital roles in many aspects of plant growth and development. AL proteins contain an Alfin-like domain and a specific PHD-finger structure domain at the N-terminus and C-terminus, respectively. The PHD domain can bind to a specific (C/A) CAC element in the promoter region and affect plant growth and development by regulating the expression of functional genes. This review describes a variety of AL transcription factors that have been isolated and characterized in Arabidopsis thaliana, Brassica rapa, Zea mays, Brassica oleracea, Solanum lycopersicum, Populus trichocarpa, Pyrus bretschenedri, Malus domestica, and other species. These studies have focused mainly on plant growth and development, different abiotic stress responses, different hormonal stress responses, and stress responses after exposure to pathogenic bacteria. However, studies on the molecular functional mechanisms of Alfin-like transcription factors and the interactions between different signaling pathways are rare. In this review, we performed phylogenetic analysis, cluster analysis, and motif analysis based on A. thaliana sequences. We summarize the structural characteristics of AL transcription factors in different plant species and the diverse functions of AL transcription factors in plant development and stress regulation responses. The aim of this study was to provide a reference for further application of the functions and mechanisms of action of the AL protein family in plants.


Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/metabolismo , Desenvolvimento Vegetal/genética
4.
Plants (Basel) ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570984

RESUMO

Alfin-like (AL) transcription factors are a family of plant-specific genes with a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus that play important roles in plant development and stress response. In the present study, genome-wide identification and analysis were performed of the AL protein family in cultivated tomato (Solanum lycopersicum) and three wild relatives (S. pennellii, S. pimpinellifolium, and S. lycopersicoides) to evaluate their response to different abiotic stresses. A total of 39 ALs were identified and classified into four groups and based on phylogenetic tree and evolutionary analysis were shown to have formed prior to the differentiation of monocotyledons and dicots. Moreover, cis-acting element analysis revealed that various phytohormone response and abiotic stress response elements were highly existed in tomato. In addition, further analysis of the SlAL3 gene revealed that its expression was induced by drought and salt stresses and localized to the nucleus. In conclusion, our findings concerning AL genes provide useful information for further studies on their functions and regulatory mechanisms and provide theoretical references for studying AL gene response to abiotic stresses in plants.

5.
Genes (Basel) ; 14(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37372453

RESUMO

WD40 proteins are a superfamily of regulatory proteins widely found in eukaryotes that play an important role in regulating plant growth and development. However, the systematic identification and characterization of WD40 proteins in tomato (Solanum lycopersicum L.) have not been reported. In the present study, we identified 207 WD40 genes in the tomatoes genome and analyzed their chromosomal location, gene structure and evolutionary relationships. A total of 207 tomato WD40 genes were classified by structural domain and phylogenetic tree analyses into five clusters and 12 subfamilies and were found to be unevenly distributed across the 12 tomato chromosomes. We identified six tandem duplication gene pairs and 24 segmental duplication pairs in the WD40 gene family, with segmental duplication being the major mode of expansion in tomatoes. Ka/Ks analysis revealed that paralogs and orthologs of WD40 family genes underwent mainly purifying selection during the evolutionary process. RNA-seq data from different tissues and developmental periods of tomato fruit development showed tissue-specific expression of WD40 genes. In addition, we constructed four coexpression networks according to the transcriptome and metabolome data for WD40 proteins involved in fruit development that may be related to total soluble solid formation. The results provide a comprehensive overview of the tomato WD40 gene family and will provide valuable information for the validation of the function of tomato WD40 genes in fruit development.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Família Multigênica , Filogenia , Fatores de Transcrição/genética , Genoma de Planta/genética
6.
Nat Genet ; 55(5): 852-860, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024581

RESUMO

Effective utilization of wild relatives is key to overcoming challenges in genetic improvement of cultivated tomato, which has a narrow genetic basis; however, current efforts to decipher high-quality genomes for tomato wild species are insufficient. Here, we report chromosome-scale tomato genomes from nine wild species and two cultivated accessions, representative of Solanum section Lycopersicon, the tomato clade. Together with two previously released genomes, we elucidate the phylogeny of Lycopersicon and construct a section-wide gene repertoire. We reveal the landscape of structural variants and provide entry to the genomic diversity among tomato wild relatives, enabling the discovery of a wild tomato gene with the potential to increase yields of modern cultivated tomatoes. Construction of a graph-based genome enables structural-variant-based genome-wide association studies, identifying numerous signals associated with tomato flavor-related traits and fruit metabolites. The tomato super-pangenome resources will expedite biological studies and breeding of this globally important crop.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Estudo de Associação Genômica Ampla , Genoma de Planta/genética , Melhoramento Vegetal , Solanum/genética , Genômica
7.
Plants (Basel) ; 12(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111847

RESUMO

Leaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves with the wild type (WT) in terms of cytology, physiology, transcriptome and metabolism. The results showed that the thylakoid grana lamellae of MT were loosely arranged and fewer in number than WT. Physiological experiments also showed that MT had less chlorophyll content and more accumulation of reactive oxygen species (ROS) than WT. Furthermore, the activity of several key enzymes in C4 photosynthetic carbon assimilation pathway was more enhanced in MT than WT. Transcriptomic and metabolomic analyses showed that differential expression genes and differentially accumulated metabolites in MT were mainly co-enriched in the pathways related to photosystem-antenna proteins, central carbon metabolism, glutathione metabolism, phenylpropanoid biosynthesis and flavonoid metabolism. We also analyzed several key proteins in photosynthesis and chloroplast transport by Western blot. In summary, the results may provide a new insight into the understanding of how plants respond to the impaired photosynthesis by regulating chloroplast development and photosynthetic carbon assimilation pathways.

8.
Front Plant Sci ; 14: 1115593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814758

RESUMO

Salt stress has become one of the main limiting factors affecting the normal growth and development of tomatoes as well as fruit quality and yields. To further reveal the regulatory relationships between tomato hormones under salt stress, the interaction between hormones and TF and the genome-wide gene interaction network were analyzed and constructed. After salt treatment, the levels of ABA, SA, and JA were significantly increased, the levels of GA were decreased, and IAA and tZ showed a trend of first increasing and then decreasing. The expression patterns of hormone biosynthesis and signal transduction related genes were analyzed based on RNA-seq analysis, the co-expression network of hormones and genome-wide co-expression networks were constructed using weighted gene co-expression network analysis (WGCNA). The expression patterns of specific transcription factors under salt stress were also systematically analyzed and identified 20 hormone-related candidate genes associated with salt stress. In conclusion, we first revealed the relationship between hormones and genes in tomatoes under salt stress based on hormone and transcriptome expression profiles and constructed a gene regulatory network. A transcriptional regulation model of tomato consisted of six types of hormones was also proposed. Our study provided valuable insights into the molecular mechanisms regulating salt tolerance in tomatoes.

9.
PeerJ ; 11: e14844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815985

RESUMO

Wild tomato germplasm is a valuable resource for improving biotic and abiotic stresses in tomato breeding. The HVA22 is widely present in eukaryotes and involved in growth and development as well as stress response, such as cold, salt, drought, and biotic stress. In the present study, we identified 45 HVA22 genes in three wild species of tomatoes. The phylogenetic relationships, gene localization to chromosomes, gene structure, gene collinearity, protein interactions, and cis-acting element prediction of all 45 HVA22 genes (14 in Solanum pennellii, 15 in S. pimpinellifolium, and 16 in S. lycopersicoides) were analyzed. The phylogenetic analysis showed that the all HVA22 proteins from the family Solanaceae were divided into three branches. The identified 45 HVA22 genes were grouped into four subfamilies, which displayed similar number of exons and expanded in a fragmentary replication manner. The distribution of HVA22 genes on the chromosomes of the three wild tomato species was also highly similar. RNA-seq and qRT-PCR revealed that HVA22 genes were expressed in different tissues and induced by drought, salt, and phytohormone treatments. These results might be useful for explaining the evolution, expression patterns, and functional divergence of HVA22 genes in Lycopersicon.


Assuntos
Solanum lycopersicum , Solanum , Filogenia , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/farmacologia
11.
Plants (Basel) ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559607

RESUMO

The 14-3-3 proteins, which are ubiquitous and highly conserved in eukaryotic cells, play an essential role in various areas of plant growth, development, and physiological processes. The tomato is one of the most valuable vegetable crops on the planet. The main objective of the present study was to perform genome-wide identification and analysis of the tomato 14-3-3 (SlTFT) family to investigate its response to different abiotic stresses and phytohormone treatments in order to provide valuable information for variety improvement. Here, 13 SlTFTs were identified using bioinformatics methods. Characterization showed that they were categorized into ε and non-ε groups with five and eight members, accounting for 38.5% and 61.5%, respectively. All the SlTFTs were hydrophilic, and most of them did not contain transmembrane structural domains. Meanwhile, the phylogeny of the SlTFTs had a strong correlation with the gene structure, conserved domains, and motifs. The SlTFTs showed non-random chromosomal distribution, and the promoter region contained more cis-acting elements related to abiotic stress tolerance and phytohormone responses. The results of the evolutionary analysis showed that the SlTFTs underwent negative purifying selection during evolution. Transcriptional profiling and gene expression pattern analysis showed that the expression levels of the SlTFTs varied considerably in different tissues and periods, and they played a specific role under various abiotic stresses and phytohormone treatments. Meanwhile, the constructed protein-based interaction network systematically broadens our understanding of SlTFTs. Finally, the virus-induced gene silencing of SlTFT4 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced salt resistance in tomatoes.

12.
Front Plant Sci ; 13: 1023696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570882

RESUMO

As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.

13.
BMC Plant Biol ; 22(1): 596, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536303

RESUMO

BACKGROUND: Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants and play crucial roles in regulating plant growth and development processes and resisting abiotic stress. Cultivated tomato (Solanum lycopersicum) is an important vegetable crop worldwide; however, its growth, development, yield, and quality are currently severely constrained by abiotic stressors. In contrast, wild tomato species are more tolerant to abiotic stress and can grow normally in extreme environments. The main objective of this study was to identify, characterize, and perform gene expression analysis of LEA protein families from cultivated and wild tomato species to mine candidate genes and determine their potential role in abiotic stress tolerance in tomatoes. RESULTS: Total 60, 69, 65, and 60 LEA genes were identified in S. lycopersicum, Solanum pimpinellifolium, Solanum pennellii, and Solanum lycopersicoides, respectively. Characterization results showed that these genes could be divided into eight clusters, with the LEA_2 cluster having the most members. Most LEA genes had few introns and were non-randomly distributed on chromosomes; the promoter regions contained numerous cis-acting regulatory elements related to abiotic stress tolerance and phytohormone responses. Evolutionary analysis showed that LEA genes were highly conserved and that the segmental duplication event played an important role in evolution of the LEA gene family. Transcription and expression pattern analyses revealed different regulatory patterns of LEA genes between cultivated and wild tomato species under normal conditions. Certain S. lycopersicum LEA (SlLEA) genes showed similar expression patterns and played specific roles under different abiotic stress and phytohormone treatments. Gene ontology and protein interaction analyses showed that most LEA genes acted in response to abiotic stimuli and water deficit. Five SlLEA proteins were found to interact with 11 S. lycopersicum WRKY proteins involved in development or resistance to stress. Virus-induced gene silencing of SlLEA6 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced drought resistance in S. lycopersicum. CONCLUSION: These findings provide comprehensive information on LEA proteins in cultivated and wild tomato species and their possible functions under different abiotic and phytohormone stresses. The study systematically broadens our current understanding of LEA proteins and candidate genes and provides a theoretical basis for future functional studies aimed at improving stress resistance in tomato.


Assuntos
Solanum lycopersicum , Solanum , Reguladores de Crescimento de Plantas , Secas , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Solanum/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
14.
J Plant Physiol ; 279: 153834, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272175

RESUMO

Calcium-dependent protein kinases (CDPKs, CPKs) represent a vital class of calcium sensors, which play a crucial role in plant growth, development and adaption to complex environmental stresses. Wild species tend to exhibit greater tolerance than cultivated species under environmental stress. Here, we isolated a calcium-dependent protein kinase gene SpCPK33 located primarily on the plasma membrane of abiotic-resistant species (Solanum pennellii LA0716). It was highly expressed in stems and leaves and was also induced by cold stress. Compared with WT plants, the overexpression of SpCPK33 in cultivated tomato (cv M82) enhanced its tolerance to cold stress. Transgenic lines demonstrated strong vitality under low temperature treatment. Moreover, the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were decreased in SpCPK33-overexpressing plants. The activities of antioxidant enzymes and the levels of osmotic regulatory substances were higher. The transcript levels of cold stress-related genes were up-regulated. In summary, the results indicate that SpCPK33-overexpressing transgenic plants experience less severe chilling injury under cold stress, and improved tomato cold tolerance by scavenging ROS accumulation and modulating the expression of stress-related genes.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/metabolismo , Solanum/genética , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cálcio/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Temperatura Baixa , Resposta ao Choque Frio , Proteínas Quinases/genética
15.
Front Plant Sci ; 13: 834027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865296

RESUMO

As one of the most important vegetable crops in the world, the production of tomatoes was restricted by salt stress. Therefore, it is of great interest to analyze the salt stress tolerance genes. As the non-coding RNAs (ncRNAs) with a length of more than 200 nucleotides, long non-coding RNAs (lncRNAs) lack the ability of protein-coding, but they can play crucial roles in plant development and response to abiotic stresses by regulating gene expression. Nevertheless, there are few studies on the roles of salt-induced lncRNAs in tomatoes. Therefore, we selected wild tomato Solanum pennellii (S. pennellii) and cultivated tomato M82 to be materials. By high-throughput sequencing, 1,044 putative lncRNAs were identified here. Among them, 154 and 137 lncRNAs were differentially expressed in M82 and S. pennellii, respectively. Through functional analysis of target genes of differentially expressed lncRNAs (DE-lncRNAs), some genes were found to respond positively to salt stress by participating in abscisic acid (ABA) signaling pathway, brassinosteroid (BR) signaling pathway, ethylene (ETH) signaling pathway, and anti-oxidation process. We also construct a salt-induced lncRNA-mRNA co-expression network to dissect the putative mechanisms of high salt tolerance in S. pennellii. We analyze the function of salt-induced lncRNAs in tomato roots at the genome-wide levels for the first time. These results will contribute to understanding the molecular mechanisms of salt tolerance in tomatoes from the perspective of lncRNAs.

16.
PeerJ ; 10: e13168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651745

RESUMO

Background: Pepper (Capsicum annuum L.) is a major cash crop throughout the world. Male sterility is an important characteristic in crop species that leads to a failure to produce functional pollen, and it has crucial roles in agricultural breeding and the utilization of heterosis. Objectives: In this study, we identified many crucial factors and important components in metabolic pathways in anther and pollen development, and elucidated the molecular mechanism related to pollen abortion in pepper. Methods: Pepper pollen was observed at different stages to detect the characteristics associated with male sterility and fertility. The phytohormone and oxidoreductase activities were detected in spectrophotometric and redox reaction assays, respectively. Proteins were extracted from male sterile and fertile pepper lines, and identified by TMT/iTRAQ (tandem mass tags/isobaric tags for relative and absolute quantitation) and LC-MS/MS (liquid chromatograph-mass spectrometer) analysis. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology annotations and the Kyoto Encyclopedia of Genes and Genomes database according to |fold change)| > 1.3 and P value < 0.05. DAPs were quantified in the meiosis, tetrad, and binucleate stages by parallel reaction monitoring (PRM). Results: In this study, we screened and identified one male sterile pepper line with abnormal cytological characteristics in terms of pollen development. The peroxidase and catalase enzyme activities were significantly reduced and increased, respectively, in the male sterile line compared with the male fertile line. Phytohormone analysis demonstrated that the gibberellin, jasmonic acid, and auxin contents changed by different extents in the male sterile pepper line. Proteome analysis screened 1,645 DAPs in six clusters, which were mainly associated with the chloroplast and cytoplasm based on their similar expression levels. According to proteome analysis, 45 DAPs were quantitatively identified in the meiosis, tetrad, and binucleate stages by PRM, which were related to monoterpenoid biosynthesis, and starch and sucrose metabolism pathways. Conclusions: We screened 1,645 DAPs by proteomic analysis and 45 DAPs were related to anther and pollen development in a male sterile pepper line. In addition, the activities of peroxidase and catalase as well as the abundances of phytohormones such as gibberellin, jasmonic acid, and auxin were related to male sterility. The results obtained in this study provide insights into the molecular mechanism responsible for male sterility and fertility in pepper.


Assuntos
Capsicum , Infertilidade das Plantas , Capsicum/genética , Catalase/genética , Cromatografia Líquida , Giberelinas/análise , Reguladores de Crescimento de Plantas , Proteoma/genética , Proteômica/métodos , Espectrometria de Massas em Tandem
17.
PeerJ ; 10: e12955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251781

RESUMO

Salt stress causes the quality change and significant yield loss of tomato. However, the resources of salt-resistant tomato were still deficient and the mechanisms of tomato resistance to salt stress were still unclear. In this study, the proteomic profiles of two salt-tolerant and salt-sensitive tomato cultivars were investigated to decipher the salt-resistance mechanism of tomato and provide novel resources for tomato breeding. We found high abundance proteins related to nitrate and amino acids metabolismsin the salt-tolerant cultivars. The significant increase in abundance of proteins involved in Brassinolides and GABA biosynthesis were verified in salt-tolerant cultivars, strengthening the salt resistance of tomato. Meanwhile, salt-tolerant cultivars with higher abundance and activity of antioxidant-related proteins have more advantages in dealing with reactive oxygen species caused by salt stress. Moreover, the salt-tolerant cultivars had higher photosynthetic activity based on overexpression of proteins functioned in chloroplast, guaranteeing the sufficient nutrient for plant growth under salt stress. Furthermore, three key proteins were identified as important salt-resistant resources for breeding salt-tolerant cultivars, including sterol side chain reductase, gamma aminobutyrate transaminase and starch synthase. Our results provided series valuable strategies for salt-tolerant cultivars which can be used in future.


Assuntos
Solanum lycopersicum , Solanum nigrum , Solanum , Solanum lycopersicum/genética , Solanum/metabolismo , Proteômica , Proteínas de Plantas/genética , Melhoramento Vegetal , Solanum nigrum/metabolismo
18.
J Proteomics ; 261: 104557, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292412

RESUMO

Male sterile mutants can be used in breeding or commercial cultivation in tomato, but there are few research reports on their proteomics. In this study, we analyzed the metabolic pathways and biological functions of differentially abundant proteins (DAPs) involved in two stages of stamen development of the tomato flowers by using a high through-put iTRAQ labeled proteomic approach. There was a total of 1476 DAPs which should associated with the occurrence of pollen abortion in tomato. Moreover, there were more DAPs in the four membrane systems. It shows that membrane systems are very important for tomato pollen development. According to KEGG analysis, these signaling pathways including starch and sucrose metabolism (map00500), tropane, piperidine and pyridine alkaloids biosynthesis (map00960), amino sugar and nucleotide sugar metabolism (map00520) have important effects on pollen development. These results were verified by using mass spectrometry PRM. Finally, two candidate genes (Solyc11g065770 and Solyc11g065530) were found that may be related to pollen development and cause pollen abortion by comparison of protein-protein interaction networks and on the basis of previous studies on ms-7 gene. This data and model will provide a new insight into tomato genetic male sterility 7 and contribute to the improvement of tomato hybrid breeding. Biological significance: Artificial emasculation is still the main method of tomato hybrid breeding at present. Adopting male sterility in tomato cross breeding could greatly improve the production efficiency and seed purity; reduce the cost. Although numerous researches have been conducted to select the genes related to male sterility, the molecular mechanism remains unclear in tomato. In this study, we used the high-through-put iTRAQ labeled proteomic approach, to perform a novel comparison of expression profiles in GMS tomato line and its wildtype line. Based on these results, we proposed the potential regulated protein network involved in pollen development mechanism of tomato GMS and two candidate genes. SIGNIFICANCE: Artificial emasculation is still the main method of tomato hybrid breeding at present. Adopting male sterility in tomato cross breeding could greatly improve the production efficiency and seed purity; reduce the cost. Although numerous researches have been conducted to select the genes related to male sterility, the molecular mechanism remains unclear in tomato. In this study, we used the high-through-put iTRAQ labeled proteomic approach, to perform a novel comparison of expression profiles in GMS tomato line and its wildtype line. Based on these results, we proposed the potential regulated protein network involved in pollen development mechanism of tomato GMS and two candidate genes.


Assuntos
Infertilidade das Plantas , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Melhoramento Vegetal , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos
19.
PeerJ ; 9: e12478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820200

RESUMO

Soluble sugar is known to improve the sweetness and increase tomato sauce yield. Studies have focused on improving the content of soluble sugar in tomato fruits, usually by promoting functional genes. We studied two genes (SlINVINH1 and SlVPE5) that inhibited the accumulation of soluble sugar in tomato fruits and obtained two genes' knocked-out lines (CRISPR-invinh1 or CRISPR-vpe5) using CRISPR/Cas9. Aggregated lines with CRISPR-invinh1 and CRISPR-vpe5 were gained by hybridization and self-pollination. Compared to wild-type lines, the glucose, fructose, and total soluble solid (TSS) contents of CRISPR-invinh1 and CRISPR-vpe5 increased significantly. Glucose, fructose, and TSS levels further improved simultaneously with CRISPR-invinh1 and CRISPR-vpe5 than with single gene knock-out lines. This indicates that these genes have a synergistic effect and will increase the soluble sugar content. Thus, the knock-out SlINVINH1 and SlVPE5 may provide a practical basis for improving the sweetness of tomato fruits and their processing quality.

20.
Front Genet ; 12: 753638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621298

RESUMO

SRO (SIMILAR TO RCD ONE) is a family of plant-specific small molecule proteins that play an important role in plant growth and development and environmental responses. However, SROs still lack systematic characterization in tomato. Based on bioinformatics methods, SRO family genes were identified and characterized from cultivated tomatoes and several wild tomatoes. qRT-PCR was used to study the expression of SRO gene in cultivated tomatoes. Phylogenetic and evolutionary analyses showed that SRO genes in angiosperms share a common ancestor and that the number of SRO family members changed as plants diverged and evolved. Cultivated tomato had six SRO members, five of which still shared some degree of identity with the ancestral SRO genes. Genetic structure and physicochemical properties showed that tomato SRO genes were highly conserved with chromosomal distribution. They could be divided into three groups based on exon-intron structure, and cultivated tomato contained only two of these subclades. A number of hormonal, light and abiotic stress-responsive cis-regulatory elements were identified from the promoter of the tomato SRO gene, and they also interacted with a variety of stress-responsive proteins and microRNAs. RNA-seq analysis showed that SRO genes were widely expressed in different tissues and developmental stages of tomato, with significant tissue-specific features. Expression analysis also showed that SRO genes respond significantly to high temperature and salt stress and mediate the tomato hormone regulatory network. These results provide a theoretical basis for further investigation of the functional expression of tomato SRO genes and provide potential genetic resources for tomato resistance breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...