Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072481

RESUMO

It is crucial to clarify how the iron nanostructure activates plant growth, particularly in combination with arbuscular mycorrhizal fungi (AMF). We first identified 1.0 g·kg-1 of nanoscale zerovalent iron (nZVI) as appropriate dosage to maximize maize growth by 12.7-19.7% in non-AMF and 18.9-26.4% in AMF, respectively. Yet, excessive nZVI at 2.0 g·kg-1 exerted inhibitory effects while FeSO4 showed slight effects (p > 0.05). Under an appropriate dose, a nano core-shell structure was formed and the transfer and diffusion of electrons between PS II and PS I were facilitated, significantly promoting the reduction of ferricyanide and NADP (p < 0.05). SEM images showed that excessive nZVI particles can form stacked layers on the surface of roots and hyphae, inhibiting water and nutrient uptake. TEM observations showed that excessive nanoparticles can penetrate into root cortical cells, disrupt cellular homeostasis, and substantially elevate Fe content in roots (p < 0.05). This exacerbated membrane lipid peroxidation and osmotic regulation, accordingly restricting photosynthetic capacity and AMF colonization. Yet, appropriate nZVI can be adhered to a mycelium surface, forming a uniform nanofilm structure. The strength of the mycelium network was evidently enhanced, under an increased root colonization rate and an extramatrical hyphal length (p < 0.05). Enhanced mycorrhizal infection was tightly associated with higher gas exchange and Rubisco and Rubisco enzyme activities. This enabled more photosynthetic carbon to input into AMF symbiont. There existed a positive feedback loop connecting downward transfer of photosynthate and upward transport of water/nutrients. FeSO4 only slightly affected mycorrhizal development. Thus, it was the Fe nanostructure but not its inorganic salt state that primed AMF symbionts for better growth.

2.
Nat Commun ; 15(1): 5800, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987276

RESUMO

Enhancing influenza vaccine cross-protection is imperative to alleviate the significant public health burden of influenza. Heterologous sequential immunization may synergize diverse vaccine formulations and routes to improve vaccine potency and breadth. Here we investigate the effects of immunization strategies on the generation of cross-protective immune responses in female Balb/c mice, utilizing mRNA lipid nanoparticle (LNP) and protein-based PHC nanoparticle vaccines targeting influenza hemagglutinin. Our findings emphasize the crucial role of priming vaccination in shaping Th bias and immunodominance hierarchies. mRNA LNP prime favors Th1-leaning responses, while PHC prime elicits Th2-skewing responses. We demonstrate that cellular and mucosal immune responses are pivotal correlates of cross-protection against influenza. Notably, intranasal PHC immunization outperforms its intramuscular counterpart in inducing mucosal immunity and conferring cross-protection. Sequential mRNA LNP prime and intranasal PHC boost demonstrate optimal cross-protection against antigenically drifted and shifted influenza strains. Our study offers valuable insights into tailoring immunization strategies to optimize influenza vaccine effectiveness.


Assuntos
Administração Intranasal , Proteção Cruzada , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Feminino , Humanos , Camundongos , Anticorpos Antivirais/imunologia , Proteção Cruzada/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Imunidade nas Mucosas/imunologia , Imunização/métodos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Lipídeos/química , Lipossomos , Nanopartículas/química , Nanovacinas/administração & dosagem , Nanovacinas/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Vacinação/métodos
4.
Antiviral Res ; 225: 105877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561077

RESUMO

The conventional inactivated split seasonal influenza vaccine offers low efficacy, particularly in the elderly and against antigenic variants. Here, to improve the efficacy of seasonal vaccination for the elderly population, we tested whether supplementing seasonal bivalent (H1N1 + H3N2) split (S) vaccine with M2 ectodomain repeat and multi-subtype consensus neuraminidase (NA) proteins (N1 NA + N2 NA + flu B NA) on a virus-like particle (NA-M2e) would induce enhanced cross-protection against different influenza viruses in aged mice. Immunization with split vaccine plus NA-M2e (S + NA-M2e) increased vaccine-specific IgG antibodies towards T-helper type 1 responses and hemagglutination inhibition titers. Aged mice with NA-M2e supplemented vaccination were protected against homologous and heterologous viruses at higher efficacies, as evidenced by preventing weight loss, lowering lung viral loads, inducing broadly cross-protective humoral immunity, and IFN-γ+ CD4 and CD8 T cell responses than those with seasonal vaccine. Overall, this study supports a new strategy of NA-M2e supplemented vaccination to enhance protection against homologous and antigenically different viruses in the elderly.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Idoso , Humanos , Camundongos , Animais , Infecções por Orthomyxoviridae/prevenção & controle , Neuraminidase , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , Anticorpos Antivirais , Proteção Cruzada , Camundongos Endogâmicos BALB C
5.
Virology ; 595: 110097, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685171

RESUMO

Current influenza vaccine is not effective in providing cross-protection against variants. We evaluated the immunogenicity and efficacy of multi-subtype neuraminidase (NA) and M2 ectodomain virus-like particle (m-cNA-M2e VLP) and chimeric M2e-H3 stalk protein vaccines (M2e-H3 stalk) in ferrets. Our results showed that ferrets with recombinant m-cNA-M2e VLP or M2e-H3 stalk vaccination induced multi-vaccine antigen specific IgG antibodies (M2e, H3 stalk, NA), NA inhibition, antibody-secreting cells, and IFN-γ secreting cell responses. Ferrets immunized with either m-cNA-M2e VLP or M2e-H3 stalk vaccine were protected from H1N1 and H3N2 influenza viruses by lowering viral titers in nasal washes, trachea, and lungs after challenge. Vaccinated ferret antisera conferred broad humoral immunity in naïve mice. Our findings provide evidence that immunity to M2e and HA-stalk or M2e plus multi-subtype NA proteins induces cross-protection in ferrets.


Assuntos
Anticorpos Antivirais , Proteção Cruzada , Furões , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Neuraminidase , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Proteção Cruzada/imunologia , Anticorpos Antivirais/imunologia , Neuraminidase/imunologia , Neuraminidase/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Camundongos , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Proteínas Viroporinas , Proteínas Virais
6.
Analyst ; 149(10): 2956-2965, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38597984

RESUMO

Glioblastoma is the most fatal and insidious malignancy, due to the existence of the blood-brain barrier (BBB) and the high invasiveness of tumor cells. Abnormal mitochondrial viscosity has been identified as a key feature of malignancies. Therefore, this study reports on a novel fluorescent probe for mitochondrial viscosity, called ZVGQ, which is based on the twisted intramolecular charge transfer (TICT) effect. The probe uses 3-dicyanomethyl-1,5,5-trimethylcyclohexene as an electron donor moiety and molecular rotor, and triphenylphosphine (TPP) cation as an electron acceptor and mitochondrial targeting group. ZVGQ is highly selective, pH and time stable, and exhibits rapid viscosity responsiveness. In vitro experiments showed that ZVGQ could rapidly recognize to detect the changes in mitochondrial viscosity induced by nystatin and rotenone in U87MG cells and enable long-term imaging for up to 12 h in live U87MG cells. Additionally, in vitro 3D tumor spheres and in vivo orthotopic tumor-bearing models demonstrated that the probe ZVGQ exhibited exceptional tissue penetration depth and the ability to penetrate the BBB. The probe ZVGQ not only successfully visualizes abnormal mitochondrial viscosity changes, but also provides a practical and feasible tool for real-time imaging and clinical diagnosis of glioblastoma.


Assuntos
Corantes Fluorescentes , Glioblastoma , Mitocôndrias , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Mitocôndrias/metabolismo , Viscosidade , Linhagem Celular Tumoral , Animais , Camundongos , Camundongos Nus , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Imagem Óptica
7.
Analyst ; 149(4): 1280-1288, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38226660

RESUMO

In this work, a fluorescent probe, TPABF-HS, was developed for detecting hydrogen sulfide (H2S) using a human serum albumin (HSA)-binding-based approach for amplifying the fluorescence signal and extending the linear correlation range. Compared to the most recent probes for H2S, the most interesting feature of the detection system developed herein was the especially wide linear range (0-1000 µM (0-100 eq.)), which covered the physiological and pathological levels of H2S. TPABF-HS could be used in applications high sensitivity and selectivity with an LOD value of 0.42 µM. Further, site-competition experiments and molecular docking simulation experiments indicated that signal amplification was realized by the binding of the TPABF fluorophore to the naproxen-binding site of HSA. Moreover, the extension of the measurement span could allow for applications in living cells and Caenorhabditis elegans for imaging both exogenous and endogenous H2S. This work brings new information to the strategy of signal processing by exploiting fluorescent probes.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/química , Simulação de Acoplamento Molecular , Células HeLa , Microscopia de Fluorescência
8.
Viruses ; 16(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257820

RESUMO

mRNA-based vaccine technology has been significantly developed and enhanced, particularly highlighted by the authorization of mRNA vaccines for addressing the COVID-19 pandemic. Various biomaterials are developed in nano-scales and applied as mRNA vaccine delivery platforms. However, how these mRNA nanoplatforms influence immune responses has not been thoroughly studied. Hence, we have reviewed the current understanding of various mRNA vaccine platforms. We discussed the possible pathways through which these platforms moderate the host's innate immunity and contribute to the development of adaptive immunity. We shed light on their development in reducing biotoxicity and enhancing antigen delivery efficiency. Beyond the built-in adjuvanticity of mRNA vaccines, we propose that supplementary adjuvants may be required to fine-tune and precisely control innate immunity and subsequent adaptive immune responses.


Assuntos
Pandemias , Vacinas de mRNA , Humanos , Imunidade Inata , Imunidade Adaptativa , RNA Mensageiro/genética
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123763, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198994

RESUMO

In this work, we reported a fluorescent probe Fur-SH, a derivative of benzofuranone, which was used to detect H2S in living cells and zebrafish. Based on the three structural characteristics of the probe, the effects of different structural modifications on the optical properties of the fluorophore were compared. Then, the fluorophore Fur-OH was synthesized by modifying diethylamino group with benzofuranone as the main skeleton. With 2,4-dinitrofluorobenzene as the recognition group and diethylamino as the electron donor, the push-pull electron effect occurred with nitro group, which led to fluorescence quenching, and an openable fluorescent probe Fur-SH was formed. The probe Fur-SH (λex = 510 nm; λem = 570 nm) had the advantages of smaller full width at half maxima, rapid response (5 min) and wide pH window. The quantitative properties of the probe were excellent, reaching saturation at 50 equivalents of substrate. The probe Fur-SH showed high sensitivity to H2S, with LOD of 48.9 nM and LOQ of 50 nM. At present, the probe Fur-SH had been applied to fluorescence imaging of MCF-7 cells and zebrafish. By comparing the effects of different structures on the optical properties of fluorophores, this work was expected to be helpful to the development of fluorescent probes in the future.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Animais , Corantes Fluorescentes/química , Peixe-Zebra , Sulfeto de Hidrogênio/análise , Mitocôndrias/química , Imagem Óptica , Células HeLa
10.
Vaccine ; 42(2): 111-119, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38097456

RESUMO

The first influenza virus infection (imprinting) can lead to long-term immune memory and influence subsequent vaccinations and infections. Previously, we reported a polyethyleneimine (PEI)-Aichi hemagglutinin (HA)/CpG (PHC) nanoparticle with cross-protective potential against homologous and heterologous influenza strains. Here we studied how influenza immune imprinting influences the antibody responses to the PHC vaccination and the protection against heterosubtypic virus challenges. We found that pre-existing virus immunity can maintain or synergize the vaccine-induced antibody titers, depending on the imprinting virus HA phylogenetic group. The HA group 1 virus (PR8, H1N1)-imprinted mice displayed comparable antigen-specific antibody responses to those without imprinting post-PHC vaccination. In contrast, the group 2 virus (Phi, H3N2)-imprinted mice showed significantly more robust and balanced antibodies post-vaccination, conferring complete protection against body weight loss and lung inflammation upon heterosubtypic reassortant A/Shanghai/2/2013 (rSH, H7N9) virus challenge. Our findings suggest that influenza imprinting from the same HA phylogenetic group can synergize subsequent vaccination, conferring heterosubtypic protection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Hemaglutininas , Nanovacinas , Polietilenoimina , Vírus da Influenza A Subtipo H3N2 , Filogenia , Anticorpos Antivirais , China , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA