Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 447: 138873, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452536

RESUMO

Food-derived angiotensin-converting enzyme-inhibitory (ACE-I) peptides have attracted extensive attention. Herein, the ACE-I peptides from Scomber japonicus muscle hydrolysates were screened, and their mechanisms of action and inhibition stability were explored. The quantitative structure-activity relationship (QSAR) model based on 5z-scale metrics was developed to rapidly screen for ACE-I peptides. Two novel potential ACE-I peptides (LTPFT, PLITT) were predicted through this model coupled with in silico screening, of which PLITT had the highest activity (IC50: 48.73 ± 7.59 µM). PLITT inhibited ACE activity with a mixture of non-competitive and competitive mechanisms, and this inhibition mainly contributed to the hydrogen bonding based on molecular docking study. PLITT is stable under high temperatures, pH, glucose, and NaCl. The zinc ions (Zn2+) and copper ions (Cu2+) enhanced ACE-I activity. The study suggests that the QSAR model is effective in rapidly screening for ACE-I inhibitors, and PLITT can be supplemented in foods to lower blood pressure.


Assuntos
Hidrolisados de Proteína , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Peptídeos/farmacologia , Peptídeos/química , Músculos/metabolismo , Íons , Angiotensinas , Peptidil Dipeptidase A/metabolismo
2.
Bioresour Bioprocess ; 10(1): 29, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38647925

RESUMO

Astaxanthin is an important ketocarotenoid widely used in industries. However, its application is limited because of its low yield. Sodium citrate (Na-citrate), one of the major carbon sources for microorganisms, can promote cell growth and product accumulation. The basidiomycetous red yeast Xanthophyllomyces dendrorhous was thus used to study the effect of Na-citrate on cell growth and astaxanthin synthesis. The highest biomass and astaxanthin yield (6.0 g/L and 22.5 mg/L) were obtained in shake-flask when 3 g/L Na-citrate was added at 24 h and were 1.8 and 2.0 times higher than those of the control group, respectively. Furthermore, metabolomics and real-time reverse transcription PCR (qRT-PCR) analysis were conducted to study the metabolic pathways of X. dendrorhous in response to Na-citrate. The qRT-PCR assay revealed that Na-citrate facilitated glucose consumption, promoted the metabolic flux from glycolysis, and regulated the tricarboxylic acid (TCA) cycle, providing more energy and substrates for the synthesis of astaxanthin. The gene analysis revealed that adding Na-citrate significantly upregulated the expression of six key genes (ICL, HMGS, crtE, crtYB, crtI, and crtS) involved in pathways related to astaxanthin biosynthesis. These results suggest that exogenous Na-citrate treatment is a potentially valuable strategy to stimulate astaxanthin production in X. dendrorhous.

3.
Front Pharmacol ; 13: 985618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523492

RESUMO

Endometriosis is a common gynecological disease, characterized by the presence of endometrial-like lesions outside the uterus. This debilitating disease causes chronic pelvic pain and infertility with limited therapeutics. Chemerin is a secretory protein that acts on CMKLR1 (Chemokine-Like Receptor 1) to execute functions vital for immunity, adiposity, and metabolism. Abnormal chemerin/CMKLR1 axis underlies the pathological mechanisms of certain diseases including cancer and inflammatory diseases, but its role in endometriosis remains unknown. Herein, our results showed that chemerin and CMKLR1 are up-regulated in endometriotic lesions by analyzing the human endometriosis database and murine model. Knockdown of chemerin or CMKLR1 by shRNA led to mesenchymal-epithelial transition (MET) along with compromised viability, migration, and invasion of hEM15A cells. Most importantly, 2-(α-naphthoyl) ethyltrimethylammonium iodide (α-NETA), a small molecule antagonist for CMKLR1, was evidenced to exhibit profound anti-endometriosis effects (anti-growth, anti-mesenchymal features, anti-angiogenesis, and anti-inflammation) in vitro and in vivo. Mechanistically, α-NETA exhibited a dual inhibition effect on PI3K/Akt and MAPK/ERK signaling pathways in hEM15A cells and murine endometriotic grafts. This study highlights that the chemerin/CMKLR1 signaling axis is critical for endometriosis progression, and targeting this axis by α-NETA may provide new options for therapeutic intervention.

4.
Int J Nanomedicine ; 17: 5547-5563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36444194

RESUMO

Introduction: Lack of highly expressed tumor target and ligands limits application of nano-medicine against triple-negative breast cancer (TNBC). Previous study reported that placenta-derived oncofetal chondroitin sulfate glycosaminoglycan chain (CSA) expressed on 90% of stage I-III invasive ductal breast carcinomas. Our study found the CSA anchor protein VAR2CSA derived small peptide plCSA had strong binding activity with TNBC cell lines and tumor tissue. Here, we combined the AIEgens TBZ-DPNA and therapy drug paclitaxel (PTX) to fabricate near-infrared fluorescence-guided nanodrug (plCSA-NP) to investigate its targeting and anti-tumor effect on TNBC. Methods: We synthesized and purified TBZ-DPNA with one step, measured optical properties and photoluminescence (PL) spectra. We prepared nanodrug plCSA-NP by encapsulating TBZ-DPNA and PTX and conjugating them with peptide plCSA. We evaluated plCSA-NP targeting activity by examining AIEdots fluorescence signal on TNBC cell lines and subcutaneous and lung metastatic mouse model. We assessed PTX delivery effect by cytotoxicity assay on TNBC line and tumor growth of subcutaneous and lung metastatic mouse models. Results: PL spectra and TEM imaging results showed plCSA-NP had maximum emission feature at 718 nm and nearly monodispersed nanosphere with an average diameter of 70 nm. In vitro studies showed plCSA-NPs had high affinity and cytotoxicity with TNBC cell lines. In vivo subcutaneous and lung metastasis mouse studies showed plCSA-NPs accumulated on TNBC tumor tissue, and significantly prevented TNBC subcutaneous and lung metastasis tumor growth. Conclusion: In conclusion, we provide solid evidence for chondroitin sulfate targeting peptide plCSA guided nanodrug, exhibit good targeting efficiency and therapeutic effect against TNBC primary and lung metastatic tumor growth.


Assuntos
Neoplasias Pulmonares , Nanosferas , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Sulfatos de Condroitina , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/farmacologia , Modelos Animais de Doenças , Pulmão
5.
Arch Biochem Biophys ; 730: 109396, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113626

RESUMO

Preeclampsia (PE), a systemic vascular disorder, is the leading cause of maternal and perinatal morbidity and mortality, and its pathogenesis has yet to be fully elucidated. Siglec6, a transmembrane protein, is highly expressed in human placental trophoblasts, and previous studies have shown that Siglec6 overexpression correlates with PE, but the role of Siglec6 during PE progression is unknown. Here, we demonstrated that the mRNA and protein expression levels of Siglec6 were upregulated in early-onset PE placentas compared with uncomplicated pregnancies, and Siglec6 was primarily located in syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). Moreover, our results showed that chemical reagent-induced HIF-1α accumulation promoted the mRNA and protein levels of Siglec6 in HTR8/SVneo and BeWo cells. Although Siglec6 overexpression did not affect HTR8/SVneo cell proliferation, migration, and invasion, the conditional medium derived from the Siglec6 overexpressed HTR8/SVneo cells (Siglec6-OE-CM) significantly impaired the proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, the transcriptome sequencing results revealed that Siglec6 overexpression led to the downregulation of Wnt6 in HTR8/SVneo cells, which was further confirmed by qPCR and ELISA. Recombinant human Wnt6 reversed Siglec6-OE-CM-mediated suppression of HUVEC functions by reactivating the Wnt/ß-catenin signaling pathway. Altogether, our study found that elevated trophoblastic Siglec6 contributed to the impairment of vascular endothelial cell functions by downregulating Wnt6/ß-catenin signaling.


Assuntos
Antígenos de Diferenciação Mielomonocítica , Lectinas , Pré-Eclâmpsia , Trofoblastos , Feminino , Humanos , Gravidez , beta Catenina/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , RNA Mensageiro/metabolismo , Trofoblastos/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos CD , Lectinas/genética
6.
Bioresour Technol ; 362: 127761, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961507

RESUMO

Mixotrophy of Haematococcus pluvialis is a potential strategy for producing astaxanthin. However, this strategy has not been extensively commercialized because the mixotrophic mechanisms by which H. pluvialis overcomes high light stress are unclear. This study analyzed the biochemical compositions and differential proteomics of mixotrophic H. pluvialis under different light conditions. High light exposure substantially increased astaxanthin, carbohydrate, and fatty acid contents. A total of 119 and 81 proteins were significantly up- and down-regulated after two days of high light exposure. These proteins mainly enriched pathways for photosynthetic metabolism, glyoxylate cycle, and biosynthesis of secondary metabolites. This study proposed a regulatory model through which mixotrophic H. pluvialis copes with high light stress. The model includes pathways for modulating photosynthetic apparatus, increasing astaxanthin accumulation by enhancing photorespiration, pentose phosphate and Embden-Meyerhof-Parna pathways, while thickening the cell wall by malate-oxaloacetate shuttle.


Assuntos
Carbono , Clorofíceas , Ácidos Graxos , Luz , Fotossíntese
7.
Foods ; 11(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010470

RESUMO

Oxyresveratrol (Oxy) has attracted much attention by employing it as an antibrowning agent in fruits and vegetables. In this study, the formation of cyclodextrin (CD) inclusion exhibited a certain protective effect on Oxy oxidative degradation, while hydroxypropyl-ß-cyclodextrin (HP-ß-CD) inclusion complex showed stronger stabilizing effects than those of ß-cyclodextrin (ß-CD). The combined use of CD and hydroxypropyl methylcellulose (HPMC) greatly improved the stability of Oxy-CD inclusion complexes, with approximately 70% of the trans-Oxy retained after 30 days of storage under light conditions at 25 °C. The results of the interaction between CD and Oxy determined by phase solubility studies and fluorescence spectroscopic analysis showed that the binding strength of CD and Oxy increased in the presence of HPMC. Moreover, Oxy combined with ascorbic acid and HPMC showed an excellent antibrowning effect on fresh-cut apple slices during the 48 h test period, indicating that adding HPMC as the third component will not influence the antibrowning activity of Oxy.

8.
Clin Sci (Lond) ; 136(4): 257-272, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35103285

RESUMO

Maternal circulating levels of the adipokine chemerin are elevated in preeclampsia, but its origin and contribution to preeclampsia remain unknown. We therefore studied (1) placental chemerin expression and release in human pregnancy, and (2) the consequences of chemerin overexpression via lentivirus-mediated trophoblast-specific gene manipulation in both mice and immortalized human trophoblasts. Placental chemerin expression and release were increased in women with preeclampsia, and their circulating chemerin levels correlated positively with the soluble Fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) ratio, a well-known biomarker of preeclampsia severity. Placental trophoblast chemerin overexpression in mice induced a preeclampsia-like syndrome, involving hypertension, proteinuria, and endotheliosis, combined with diminished trophoblast invasion, a disorganized labyrinth layer, and up-regulation of sFlt-1 and the inflammation markers nuclear factor-κB (NFκB), tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß. It also led to embryo resorption, while maternal serum chemerin levels correlated negatively with fetal weight in mice. Chemerin overexpression in human trophoblasts up-regulated sFlt-1, reduced vascular endothelial factor-A, and inhibited migration and invasion, as well as tube formation during co-culture with human umbilical vein endothelial cells (HUVECs). The chemokine-like receptor 1 (CMKLR1) antagonist α-NETA prevented the latter phenomenon, although it did not reverse the chemerin-induced down-regulation of the phosphoinositide 3-kinase/Akt pathway. In conclusion, up-regulation of placental chemerin synthesis disturbs normal placental development via its CMKLR1 receptor, thereby contributing to fetal growth restriction/resorption and the development of preeclampsia. Chemerin might be a novel biomarker of preeclampsia, and inhibition of the chemerin/CMKLR1 pathway is a promising novel therapeutic strategy to treat preeclampsia.


Assuntos
Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pré-Eclâmpsia/etiologia , Trofoblastos/patologia , Animais , Linhagem Celular , Quimiocinas/genética , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Placenta/metabolismo , Placenta/patologia , Fator de Crescimento Placentário/metabolismo , Gravidez , Resultado da Gravidez , Trofoblastos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Biomolecules ; 11(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207497

RESUMO

Depression affects the reproductive axis at the hypothalamus and pituitary levels, which has a significant impact on female fertility. It has been reported that G protein-coupled receptor 1 (Gpr1) mRNA is expressed in both the hypothalamus and ovaries. However, it is unclear whether there is a relationship between Gpr1 and depression, and its role in ovarian function is unknown. Here, the expression of Gpr1 was recorded in the hypothalamus of normal female mice, and co-localized with gonadotrophin-releasing hormone (GnRH) and corticotropin-releasing factor (CRF). We established a depression mouse model to evaluate the antidepressant effect of G5, an antagonistic peptide of Gpr1. The results show that an intraperitoneal injection of G5 improves depressant-like behaviors remarkably, including increased sucrose intake in the sucrose preference test and decreased immobility time in the forced swimming tests. Moreover, G5 treatment increased the release of reproductive hormone and the expression of ovarian gene caused by depression. Together, our findings reveal a link between depression and reproductive diseases through Gpr1 signaling, and suggest antagonistic peptide of Gpr1 as a potential therapeutic application for hormone-modulated depression in women.


Assuntos
Depressão/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Animais , Antidepressivos/farmacologia , Hormônio Liberador da Corticotropina , Depressão/genética , Depressão/fisiopatologia , Modelos Animais de Doenças , Feminino , Expressão Gênica/genética , Hormônio Liberador de Gonadotropina , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/patologia , Infertilidade Feminina/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovário/metabolismo , Ovário/patologia , Peptídeos/farmacologia , Hipófise/patologia , Receptores Acoplados a Proteínas G/genética , Estresse Psicológico/metabolismo
10.
Front Cell Dev Biol ; 9: 669189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109177

RESUMO

Hyperandrogenism is a key pathological feature of polycystic ovarian syndrome (PCOS). Excess androgen can lead to PCOS-like cell hypertrophy in the ovaries and adipose tissue of rodents. Here, we established a dihydrotestosterone (DHT)-induced hyperandrogenic mouse model to analyze the differences in gene expression and signaling pathways of the ovaries and gonad fat pads of mice treated with or without DHT by RNA microarray analysis. From the results, we focused on the overlapping differentially expressed gene-Col6a5-and the major differentially enriched signaling pathway-lipid metabolism. We employed DHT-induced mouse ovarian stromal cell, adipogenic 3T3-L1 cell and hepatic cell line NCTC1469 models to investigate whether androgens directly mediate lipid accumulation and hypertrophy. We found that DHT increased lipid droplet accumulation in ovarian stromal cells and adipogenic 3T3-L1 cells but not NCTC1469 cells. DHT significantly altered stromal cell cholesterol metabolism and steroidogenesis, as indicated by changes in cholesterol levels and the expression of related genes, but these effects were not observed in 3T3-L1 cells. Moreover, Col6a5 expression was significantly increased in ovaries and gonadal fat pads of DHT-treated mice, and Col6a5 inhibition alleviated DHT-induced excess lipid accumulation and hypertrophy of ovarian stromal cells and adipogenic 3T3-L1 cells, even improved lipid metabolism in overnourished NCTC1469 cells. Our results indicate that Col6a5 plays important roles in the pathogenesis of DHT-induced lipid metabolism disorder and the hypertrophy of ovarian stromal cells and adipocytes.

11.
Am J Physiol Endocrinol Metab ; 320(4): E786-E796, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586490

RESUMO

We investigated the expression levels of nephroblastoma overexpressed [NOV or CCN3 (cellular communication network factor 3)] in the serum and placenta of pregnant women and of pregnant mice fed a high-fat diet (HFD), and its effect on placental glucose transporter 3 (GLUT3) expression, to examine its role in gestational diabetes mellitus (GDM). NOV/CCN3 expression was increased in the mouse serum during pregnancy. At gestational day 18, NOV/CCN3 protein expression was increased in the serum and placenta of the HFD mice compared with that of mice fed a normal diet. Compared with non-GDM patients, the patients with GDM had significantly increased serum NOV/CCN3 protein expression and placental NOV/CCN3 mRNA expression. Therefore, we hypothesized that NOV/CCN3 signaling may be involved in the pathogenesis of GDM. We administered NOV/CCN3 recombinant protein via intraperitoneal injections to pregnant mice fed HFD or normal diet. NOV/CCN3 overexpression led to glucose intolerance. Combined with the HFD, NOV/CCN3 exacerbated glucose intolerance and caused insulin resistance. NOV/CCN3 upregulates GLUT3 expression and affects the mammalian target of rapamycin (mTOR) pathway in the GDM environment in vivo and in vitro. In summary, our results demonstrate, for the first time, the molecular mechanism of NOV/CCN3 signaling in maternal metabolism to regulate glucose balance during pregnancy. NOV/CCN3 may be a potential target for detecting and treating GDM.NEW & NOTEWORTHY NOV/CCN3 regulates glucose homeostasis in mice during pregnancy. NOV/CCN3 upregulates GLUT3 expression and affects the mTOR pathway in the GDM environment in vivo and in vitro.


Assuntos
Dieta Hiperlipídica , Transportador de Glucose Tipo 3/genética , Proteína Sobre-Expressa em Nefroblastoma/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Gorduras na Dieta/farmacologia , Feminino , Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Int J Med Sci ; 18(1): 207-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390789

RESUMO

Background: Placental-like chondroitin sulfate A (pl-CSA) is exclusively expressed in cancerous and placental tissues and is highly correlated with the degree of malignancy. However, the mechanism through which pl-CSA regulates tumorigenesis and metastasis in choriocarcinoma remains unclear. Methods: Stable transfectants of the JEG3 choriocarcinoma cell line, including a negative control (NC) line and a cell line with knockout of the biosynthetic enzyme CS synthase-2 (ChSy-2) (ChSy-2-/-), were obtained using CRISPR/Cas9 systems and identified by immunofluorescence, flow cytometry, western blots and enzyme-linked immunosorbent assays (ELISAs). The proliferation, migration, invasion and colony formation of the cells were determined by a cell counting kit, scratch-wound assays, transwell assays and soft agar colony formation assays in vitro, respectively. The tumorigenesis and metastasis of choriocarcinoma were also investigated through two xenograft models in vivo. Results: The ChSy-2 protein in the ChSy-2-/-group was below the detection threshold, which was accompanied a significant reduction in the pl-CSA level. Reducing pl-CSA through ChSy-2 knockout significantly inhibited cell proliferation, migration, invasion and colony formation in vitro and tumorigenesis and metastasis of choriocarcinoma, with deceases in tumor volume and metastatic foci and a high percent survival compared to the NC in vivo. Conclusion: pl-CSA, as a necessary component of JEG-3 cells, was efficiently reduced through ChSy-2 knockout, which significantly inhibited the tumorigenesis and metastasis of choriocarcinoma. ChSy-2/pl-CSA could be alternative targets for tumor therapy.


Assuntos
Carcinogênese/patologia , Sulfatos de Condroitina/metabolismo , Coriocarcinoma/secundário , Glicosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Uterinas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Glicosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Gravidez , Organismos Livres de Patógenos Específicos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Front Cell Dev Biol ; 9: 797060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083220

RESUMO

Microgravity has been shown to induces many changes in proliferation, differentiation and growth behavior of stem cells. Little is known about the effect of microgravity on hematopoietic differentiation of pluripotent stem cells (PSCs). In this study, we used the random position machine (RPM) to investigate whether simulated microgravity (SMG) allows the induction of hematopoietic stem/progenitor cell (HSPC) derived from human embryonic stem cells (hESCs) in vitro. The results showed that SMG facilitates hESCs differentiate to HSPC with more efficient induction of CD34+CD31+ hemogenic endothelium progenitors (HEPs) on day 4 and CD34+CD43+ HSPC on day 7, and these cells shows an increased generation of functional hematopoietic cells in colony-forming unit assay when compared with normal gravity (NG) conditions. Additionally, we found that SMG significantly increased the total number of cells on day 4 and day 7 which formed more 3D cell clusters. Transcriptome analysis of cells identified thousands of differentially expressed genes (DEGs) between NG and SMG. DEGs down-regulated were enriched in the axonogenesis, positive regulation of cell adhesion, cell adhesion molecule and axon guidance, while SMG resulted in the up-regulation of genes were functionally associated with DNA replication, cell cycle, PI3K-Akt signaling pathway and tumorigenesis. Interestingly, some key gene terms were enriched in SMG, like hypoxia and ECM receptor interaction. Moreover, HSPC obtained from SMG culture conditions had a robust ability of proliferation in vitro. The proliferated cells also had the ability to form erythroid, granulocyte and monocyte/macrophage colonies, and can be induced to generate macrophages and megakaryocytes. In summary, our data has shown a potent impact of microgravity on hematopoietic differentiation of hPSCs for the first time and reveals an underlying mechanism for the effect of SMG on hematopoiesis development.

14.
Mar Drugs ; 18(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948074

RESUMO

Marine microalgae are regarded as potential feedstock because of their multiple valuable compounds, including lipids, pigments, carbohydrates, and proteins. Some of these compounds exhibit attractive bioactivities, such as carotenoids, ω-3 polyunsaturated fatty acids, polysaccharides, and peptides. However, the production cost of bioactive compounds is quite high, due to the low contents in marine microalgae. Comprehensive utilization of marine microalgae for multiple compounds production instead of the sole product can be an efficient way to increase the economic feasibility of bioactive compounds production and improve the production efficiency. This paper discusses the metabolic network of marine microalgal compounds, and indicates their interaction in biosynthesis pathways. Furthermore, potential applications of co-production of multiple compounds under various cultivation conditions by shifting metabolic flux are discussed, and cultivation strategies based on environmental and/or nutrient conditions are proposed to improve the co-production. Moreover, biorefinery techniques for the integral use of microalgal biomass are summarized. These techniques include the co-extraction of multiple bioactive compounds from marine microalgae by conventional methods, super/subcritical fluids, and ionic liquids, as well as direct utilization and biochemical or thermochemical conversion of microalgal residues. Overall, this review sheds light on the potential of the comprehensive utilization of marine microalgae for improving bioeconomy in practical industrial application.


Assuntos
Produtos Biológicos/metabolismo , Biotecnologia , Microalgas/metabolismo , Produtos Biológicos/economia , Produtos Biológicos/farmacologia , Biomassa , Biotecnologia/economia , Análise Custo-Benefício , Metabolismo Energético
15.
Int J Mol Med ; 46(2): 817-827, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32626948

RESUMO

Breakthroughs in cancer management result from the development of drugs that can be used for early diagnosis and effective treatment. Surgery, chemotherapy, radiotherapy and hormone therapy are the main anticancer therapies. However, traditional cancer chemotherapy is associated with serious systemic side effects. Nanoparticles (NPs) provide an effective solution for cancer treatment via the targeted delivery of drugs to cancer cells, while minimizing injury to normal cells. Glycosaminoglycan­placental chondroitin sulfate A (plCSA) is expressed in a number of tumor cells and trophoblasts. A plCSA­binding peptide (plCSA­BP) was isolated from malaria protein VAR2CSA, which can effectively promote the binding of lipid polymer NPs to tumor cells, thereby significantly enhancing the anticancer effect of encapsulated drugs. Brusatol is an important compound derived from Brucea javanica that exerts a multitude of biological effects, including inhibiting tumor cell growth, reducing the reproduction of malaria parasites, reducing inflammation and resisting virus invasion. In the present study, brusatol­loaded NPs (BNPs) or coumarin 6 NPs (CNPs), plCSA­BP and scrambled control peptide­bound BNPs or CNPs were prepared. Ovarian cancer cells (SKOV3), endometrial cancer cells (HEC­1­A) and lung cancer cells (A549) were treated with the NPs. The uptake of plCSA­CNPs by tumor cells was found to be markedly higher compared with that of other types of NPs. Further studies demonstrated that the plCSA­BNPs promoted the apoptosis of cancer cells more effectively and inhibited their proliferation, invasion and migration, accompanied by downregulation of matrix metalloproteinase (MMP)­2, MMP­9 and B­cell CLL/lymphoma 2 (BCL2) levels, but upregulation of BCL2­associated X protein BAX and cleaved caspase­3 levels. The results demonstrated the potential of brusatol delivered by plCSA­modified NPs as a chemotherapeutic agent for the targeted therapy of tumors by regulating the BCL2, BAX, cleaved caspase­3, MMP­2 and MMP­9 pathways, and indicated that it may be an effective and safe strategy for the treatment of various tumors.


Assuntos
Glicosaminoglicanos/metabolismo , Quassinas/farmacologia , Células A549 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sulfatos de Condroitina/química , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
16.
Microb Biotechnol ; 13(5): 1446-1460, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32426951

RESUMO

Xanthophyllomyces dendrorhous is a promising source of natural astaxanthin due to its ability to accumulate high amounts of astaxanthin. This study showed that 6-benzylaminopurine (6-BAP) is an effective substrate that enhances cell biomass and astaxanthin accumulation in X. dendrorhous. In the current study, the biomass and astaxanthin content in X. dendrorhous were determined to be improved by 21.98% and 24.20%, respectively, induced by 6-BAP treatments. To further understand the metabolic responses of X. dendrorhous to 6-BAP, time-course metabolomics and gene expression levels of X. dendrorhous cultures with and without 6-BAP feeding were investigated. Metabolome analysis revealed that 6-BAP facilitated glucose consumption, promoted the glycolysis, suppressed the TCA cycle, drove carbon flux of acetyl-CoA into fatty acid and mevalonate biosynthesis, and finally facilitated the formation of astaxanthin. ROS analysis suggested that the antioxidant mechanism in X. dendrorhous can be induced by 6-BAP. Additionally, the process of 6-BAP significantly upregulated the expression of six key genes involved in pathways related to astaxanthin biosynthesis. This research demonstrates the metabolomic mechanism of phytohormone stimulation of astaxanthin production iNn X. dendrorhous and presents a new strategy to improve astaxanthin production to prevent the dilemma of choosing between accumulation of astaxanthin and cell biomass.


Assuntos
Basidiomycota , Reguladores de Crescimento de Plantas , Basidiomycota/genética , Metabolômica , Transcriptoma , Xantofilas
17.
Am J Physiol Endocrinol Metab ; 318(3): E371-E380, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910029

RESUMO

Excess androgen-induced obesity has become a public health problem, and its prevalence has increased substantially in recent years. Chemokine-like receptor 1 (CMKLR1), a receptor of chemerin secreted by adipose tissue, is linked to adipocyte differentiation, adipose tissue development, and obesity. However, the effect of CMKLR1 signaling on androgen-mediated adiposity in vivo remains unclear. Using CMKLR1-knockout mice, we constructed an androgen-excess female mouse model through 5α-dihydrotestosterone (DHT) treatment and an androgen-deficient male mouse model by orchidectomy (ORX). For mechanism investigation, we used 2-(α-Naphthoyl) ethyltrimethylammonium iodide (α-NETA), an antagonist of CMKLR1, to suppress CMKLR1 in vivo and wortmannin, a PI3K signaling antagonist, to treat brown adipose tissue (BAT) explant cultures in vitro. Furthermore, we used histological examination and quantitative PCR, as well as Western blot analysis, glucose tolerance tests, and biochemical analysis of serum, to describe the phenotypes and the changes in gene expression. We demonstrated that excess androgen in the female mice resulted in larger cells in the white adipose tissue (WAT) and the BAT, whereas androgen deprivation in the male mice induced a reduction in cell size. Both of these adipocyte size effects could be attenuated in the CMKLR1-knockout mice. CMKLR1 deficiency influenced the effect of androgen treatment on adipose tissue by regulating the mRNA expression of the androgen receptor (AR) and adipocyte markers (such as Fabp4 and Cidea). Moreover, suppression of CMKLR1 by α-NETA could also reduce the extent of the adipocyte cell enlargement caused by DHT. Furthermore, we found that DHT could reduce the levels of phosphorylated ERK (pERK) in the BAT, while CMKLR1 inactivation inhibited this effect, which had been induced by DHT, through the PI3K signaling pathway. These findings reveal an antiobesity role of CMKLR1 deficiency in regulating lipid accumulation, highlighting the scientific importance for the further development of small-molecule CMKLR1 antagonists as fundamental research tools and/or as potential drugs for use in the treatment of adiposity.


Assuntos
Androgênios/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Receptores de Quimiocinas/deficiência , Adipócitos/metabolismo , Adipócitos/ultraestrutura , Tecido Adiposo Marrom/efeitos dos fármacos , Androgênios/deficiência , Animais , Peso Corporal , Tamanho Celular , Di-Hidrotestosterona/farmacologia , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naftalenos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Compostos de Amônio Quaternário/farmacologia , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/genética , Wortmanina/farmacologia
18.
Am J Physiol Cell Physiol ; 318(3): C664-C674, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851527

RESUMO

R-spondin3 (RSPO3), an activator of Wnt/ß-catenin signaling, plays a key role in tumorigenesis of various cancers, but its role in choriocarcinoma remains unknown. To investigate the effect of RSPO3 on the tumor growth of choriocarcinoma JEG-3 cells, the expression of RSPO3 in human term placenta was detected, and a stable RSPO3-overexpressing JEG-3 cell line was established via lentivirus-mediated transduction. The expression of biomarkers involved in tumorigenicity was detected in the RSPO3-overexpressing JEG-3 cells, and cell proliferation, invasion, migration, and apoptosis were investigated. Moreover, soft agar clonogenic assays and xenograft tumorigenicity assays were performed to assess the effect of RSPO3 on tumor growth in vitro and in vivo. The results showed that RSPO3 was widely expressed in human term placenta and overexpression of RSPO3 promoted the proliferation and inhibited the migration, invasion, and apoptosis of the JEG-3 cells. Meanwhile, RSPO3 overexpression promoted tumor growth both in vivo and in vitro. Further investigation showed that the phosphorylation levels of Akt, phosphatidylinositol 3-kinase (PI3K), and ERK as well the expression of ß-catenin and proliferating cell nuclear antigen (PCNA) were increased in the RSPO3-overexpressing JEG-3 cells and tumor xenograft. Taken together, these data indicate that RSPO3 promotes the tumor growth of choriocarcinoma via Akt/PI3K/ERK signaling, which supports RSPO3 as an oncogenic driver promoting the progression of choriocarcinoma.


Assuntos
Coriocarcinoma/metabolismo , Coriocarcinoma/patologia , Trombospondinas/biossíntese , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Adulto , Animais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Coriocarcinoma/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Gravidez , Trombospondinas/genética , Neoplasias Uterinas/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Mater Sci Eng C Mater Biol Appl ; 106: 110171, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753378

RESUMO

To developing a multiple cancer types targeting drug delivery carrier system, a 28 amino acids from the VAR2CSA was synthesized as the placental CSA-binding peptide (plCSA-BP). Its specific binding ability to cancer cells was tested on cancer tissue array, and the results showed that plCSA-BP could bind to multiple cancer types. Then, the plCSA-BP was used as a guiding peptide to coat nanoparticles synthesized from N-2-HACC (CSA/HACC-NPs) which were loaded with prodigiosin (CSA/HACC-PNPs) or indocyanine green (CSA/HACC-INPs). The cancer cells specific targeting and efficacy of the CSA/HACC-PNPs were tested by different cancer cells in vitro and various cancer xenograft model in vivo. A scramble peptide (SCR) was used as control and synthesized SCR/HACC-PNPs and SCR/HACC-INPs. The results showed that the CSA/HACC-INPs could specifically uptake by JEG-3, PC3 and A594 cells, and the CSA/HACC-PNPs exhibited better anti-cancer activity and lower toxic effect in subcutaneous choriocarcinoma and prostatic tumor models compared with the free prodigiosin, HACC-PNPs and SCR/HACC-PNPs. So, the CSA/HACC-NPs could be used as a specific delivery carrier for multiple cancer types, and provided an alternate treatment option of various cancers with a single recipe.


Assuntos
Quitosana/análogos & derivados , Quitosana/química , Nanopartículas/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Masculino , Células PC-3
20.
Int J Mol Sci ; 20(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683965

RESUMO

The available and effective therapeutic means to treat choriocarcinoma is seriously lacking, mainly due to the toxic effects caused by chemotherapy and radiotherapy. Accordingly, we developed a method for targeting delivery of chemotherapeutical drugs only to cancer cells, not normal cells, in vivo, by using a synthetic placental chondroitin sulfate (CSA)-binding peptide (plCSA-BP) derived from malarial protein VAR2CSA. A 28 amino acids placental CSA-binding peptide (plCSA-BP) from the VAR2CSA was synthesized as a guiding peptide for tumor-targeting delivery, dendrigraft poly-L-lysines (DGL) was modified with plCSA-BP and served as a novel targeted delivery carrier. Choriocarcinoma was selected to test the effect of targeted delivery carrier, and prodigiosin isolated from Serratia marcescens subsp. lawsoniana was selected as a chemotherapeutical drug and encapsulated in the DGL modified by the plCSA-BP nanoparticles (DGL/CSA-PNPs). DGL/CSA-PNPs had a sustained slow-release feature at pH 7.4, which could specifically bind to the JEG3 cells and exhibited better anticancer activity than that of the controls. The DGL/CSA-PNPs induced the apoptosis of JEG3 cells through caspase-3 and the P53 signaling pathway. DGL/CSA-PNPs can be used as an excellent targeted delivery carrier for anticancer drugs, and the prodigiosin could be an alternative chemotherapeutical drug for choriocarcinoma.


Assuntos
Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Coriocarcinoma/patologia , Nanopartículas/química , Peptídeos/química , Polilisina/química , Prodigiosina/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sulfatos de Condroitina/química , Coriocarcinoma/metabolismo , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Prodigiosina/administração & dosagem , Prodigiosina/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...