Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 7(10): 3265-74, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18852130

RESUMO

ABT-263 is a potent, orally bioavailable inhibitor of the antiapoptotic Bcl-2 family members Bcl-2, Bcl-x(L), and Bcl-w, which is currently in phase I clinical trials. Previous work has shown that this compound has low nanomolar cell-killing activity in a variety of lymphoma and leukemia cell lines, many of which overexpress Bcl-2 through a variety of mechanisms. Rapamycin is a macrolide antibiotic that inhibits the mammalian target of rapamycin complex, leading to cell cycle arrest and inhibition of protein translation. Rapamycin (and its analogues) has shown activity in a variety of tumor cell lines primarily through induction of cell cycle arrest. Activity has also been shown clinically in mantle cell lymphoma and advanced renal cell carcinoma. Here, we show that treatment of the follicular lymphoma lines DoHH-2 and SuDHL-4 with 100 nmol/L rapamycin induces substantial G(0)-G(1) arrest. Addition of as little as 39 nmol/L ABT-263 to the rapamycin regimen induced a 3-fold increase in sub-G(0) cells. Combination of these agents also led to a significant increase in Annexin V staining over ABT-263 alone. In xenograft models of these tumors, rapamycin induced a largely cytostatic response in the DoHH-2 and SuDHL-4 models. Coadministration with ABT-263 induced significant tumor regression, with DoHH-2 and SuDHL-4 tumors showing 100% overall response rates. Apoptosis in these tumors was significantly enhanced by combination therapy as measured by staining with an antibody specific for cleaved caspase-3. These data suggest that combination of ABT-263 and rapamycin or its analogues represents a promising therapeutic strategy for the treatment of lymphoma.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Linfoma Difuso de Grandes Células B/patologia , Sirolimo/farmacologia , Sulfonamidas/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/terapia , Camundongos , Camundongos SCID , Indução de Remissão , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Clin Cancer Res ; 14(11): 3268-77, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18519752

RESUMO

PURPOSE: The purpose of this study was to characterize the activity of the Bcl-2 protein family inhibitor ABT-263 in a panel of small cell lung cancer (SCLC) xenograft models. EXPERIMENTAL DESIGN: A panel of 11 SCLC xenograft models was established to evaluate the efficacy of ABT-263. Single agent activity was examined on a continuous dosing schedule in each of these models. The H146 model was used to further evaluate dose and schedule, comparison to standard cytotoxic agents, and induction of apoptosis. RESULTS: ABT-263 exhibited a range of antitumor activity, leading to complete tumor regression in several models. Significant regressions of tumors as large as 1 cc were also observed. The efficacy of ABT-263 was also quite durable; in several cases, minimal tumor regrowth was noted several weeks after the cessation of treatment. Antitumor effects were equal or superior to that of several clinically approved cytotoxic agents. Regression of large established tumors was observed through several cycles of therapy and efficacy was retained in a Pgp-1 overexpressing line. Significant efficacy was observed on several dose and therapeutic schedules and was associated with significant induction of apoptosis. CONCLUSIONS: ABT-263 is a potent, orally bioavailable inhibitor of Bcl-2 family proteins that has recently entered clinical trials. The efficacy data reported here suggest that SCLC is a promising area of clinical investigation with this agent.


Assuntos
Compostos de Anilina/administração & dosagem , Antineoplásicos/administração & dosagem , Carcinoma de Células Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sulfonamidas/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Res ; 66(17): 8731-9, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16951189

RESUMO

Inhibition of the prosurvival members of the Bcl-2 family of proteins represents an attractive strategy for the treatment of cancer. We have previously reported the activity of ABT-737, a potent inhibitor of Bcl-2, Bcl-X(L), and Bcl-w, which exhibits monotherapy efficacy in xenograft models of small-cell lung cancer and lymphoma and potentiates the activity of numerous cytotoxic agents. Here we describe the biological activity of A-385358, a small molecule with relative selectivity for binding to Bcl-X(L) versus Bcl-2 (K(i)'s of 0.80 and 67 nmol/L for Bcl-X(L) and Bcl-2, respectively). This compound efficiently enters cells and co-localizes with the mitochondrial membrane. Although A-385358 shows relatively modest single-agent cytotoxic activity against most tumor cell lines, it has an EC(50) of <500 nmol/L in cells dependent on Bcl-X(L) for survival. In addition, A-385358 enhances the in vitro cytotoxic activity of numerous chemotherapeutic agents (paclitaxel, etoposide, cisplatin, and doxorubicin) in several tumor cell lines. In A549 non-small-cell lung cancer cells, A-385358 potentiates the activity of paclitaxel by as much as 25-fold. Importantly, A-385358 also potentiated the activity of paclitaxel in vivo. Significant inhibition of tumor growth was observed when A-385358 was added to maximally tolerated or half maximally tolerated doses of paclitaxel in the A549 xenograft model. In tumors, the combination therapy also resulted in a significant increase in mitotic arrest followed by apoptosis relative to paclitaxel monotherapy.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Nitrofenóis/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Proteína bcl-X/antagonistas & inibidores , Compostos de Anilina/farmacocinética , Compostos de Anilina/uso terapêutico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacocinética , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Cinética , Masculino , Camundongos , Camundongos SCID , Nitrofenóis/farmacocinética , Nitrofenóis/farmacologia , Paclitaxel/farmacocinética , Piperazinas/farmacocinética , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Sulfonamidas/farmacocinética , Transplante Heterólogo
4.
Mol Cancer Ther ; 5(4): 995-1006, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16648571

RESUMO

ABT-869 is a structurally novel, receptor tyrosine kinase (RTK) inhibitor that is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor families (e.g., KDR IC50 = 4 nmol/L) but has much less activity (IC50s > 1 micromol/L) against unrelated RTKs, soluble tyrosine kinases, or serine/threonine kinases. The inhibition profile of ABT-869 is evident in cellular assays of RTK phosphorylation (IC50 = 2, 4, and 7 nmol/L for PDGFR-beta, KDR, and CSF-1R, respectively) and VEGF-stimulated proliferation (IC50 = 0.2 nmol/L for human endothelial cells). ABT-869 is not a general antiproliferative agent because, in most cancer cells, >1,000-fold higher concentrations of ABT-869 are required for inhibition of proliferation. However, ABT-869 exhibits potent antiproliferative and apoptotic effects on cancer cells whose proliferation is dependent on mutant kinases, such as FLT3. In vivo ABT-869 is effective orally in the mechanism-based murine models of VEGF-induced uterine edema (ED50 = 0.5 mg/kg) and corneal angiogenesis (>50% inhibition, 15 mg/kg). In tumor growth studies, ABT-869 exhibits efficacy in human fibrosarcoma and breast, colon, and small cell lung carcinoma xenograft models (ED50 = 1.5-5 mg/kg, twice daily) and is also effective (>50% inhibition) in orthotopic breast and glioma models. Reduction in tumor size and tumor regression was observed in epidermoid carcinoma and leukemia xenograft models, respectively. In combination, ABT-869 produced at least additive effects when given with cytotoxic therapies. Based on pharmacokinetic analysis from tumor growth studies, efficacy correlated more strongly with time over a threshold value (cellular KDR IC50 corrected for plasma protein binding = 0.08 microg/mL, >or=7 hours) than with plasma area under the curve or Cmax. These results support clinical assessment of ABT-869 as a therapeutic agent for cancer.


Assuntos
Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Compostos de Fenilureia/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Células 3T3 , Animais , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Córnea , Edema , Feminino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/fisiologia , Útero/efeitos dos fármacos , Útero/fisiopatologia
5.
Nature ; 435(7042): 677-81, 2005 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15902208

RESUMO

Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.


Assuntos
Antineoplásicos/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/classificação , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Citocromos c/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Linfoma/tratamento farmacológico , Linfoma/patologia , Espectroscopia de Ressonância Magnética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Nitrofenóis , Paclitaxel/farmacologia , Piperazinas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Sulfonamidas , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...