Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403775, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738804

RESUMO

Achieving thermochromic afterglow (TCAG) in a single material for advanced information encryption remains a significant challenge. Herein, TCAG in carbon dots (CDs)-inked paper (CDs@Paper) is achieved by tuning the temperature-dependent dual-mode afterglow of room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF). The CDs are synthesized through thermal treatment of levofloxacin in melting boric acid with postpurification via dialysis. CDs@Paper exhibit both TCAG and excitation-dependent afterglow color properties. The TCAG of CDs@Paper exhibits dynamic color changes from blue at high temperatures to yellow at low temperatures by adjusting the proportion of the temperature-dependent TADF and phosphorescence. Notably, two-photon afterglow in CDs-based afterglow materials and time-dependent two-photon afterglow colors are achieved for the first time. Moreover, leveraging the opposite emission responses of phosphorescence and TADF to temperature, CDs@Paper demonstrate TCAG with temperature-sensing capabilities across a wide temperature range. Furthermore, a CDs@Paper-based 3D code containing color and temperature information is successfully developed for advanced dynamic information encryption.

2.
J Colloid Interface Sci ; 668: 132-141, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669991

RESUMO

A key challenge to enhance the therapeutic outcome of photothermal therapy (PTT) is to improve the efficiency of passive targeted accumulation of photothermal agents at tumor sites. Carbon dots (CDs) are an ideal choice for application as photothermal agents because of their advantages such as adjustable fluorescence, high photothermal conversion efficiency, and excellent biocompatibility. Here, we synthesized polylysine-modified near-infrared (NIR)-emitting CDs assemblies (plys-CDs) through post-solvothermal reaction of NIR-emitting CDs with polylysine. The encapsulated structure of plys-CDs was confirmed by determining morphological, chemical, and luminescent properties. The particle size of CDs increased to approximately 40 ± 8 nm after polylysine modification and was within the size range appropriate for achieving superior enhanced permeability and retention effect. Plys-CDs maintained a high photothermal conversion efficiency of 54.9 %, coupled with increased tumor site accumulation, leading to a high efficacy in tumor PTT. Thus, plys-CDs have a great potential for application in photothermal ablation therapy of tumors.


Assuntos
Carbono , Raios Infravermelhos , Tamanho da Partícula , Terapia Fototérmica , Polilisina , Pontos Quânticos , Polilisina/química , Carbono/química , Animais , Pontos Quânticos/química , Camundongos , Humanos , Camundongos Endogâmicos BALB C , Propriedades de Superfície , Feminino , Sobrevivência Celular/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/patologia
3.
ACS Nano ; 18(13): 9431-9442, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507745

RESUMO

The simultaneous pursuit of accelerative radiative and restricted nonradiative decay is of tremendous significance to construct high-luminescence-efficiency fluorophores in the second near-infrared wavelength window (NIR-II), which is seriously hindered by the energy gap laws. Herein, a mash-up strategy of π-extension and deuteration is proposed to efficaciously ameliorate the knotty problem. By extending the π-conjugation of the aromatic fragment and introducing an isotope effect to the aggregation-induced emission luminogen (AIEgen), an improved oscillator strength (f), coupled with suppressed deformation and high-frequency oscillation in the excited state, are successively implemented. In this case, a faster rate of radiative decay (kr) and restricted nonradiative decay (knr) are simultaneously achieved. Moreover, the preeminent emissive property of AIEgen in the molecular state could be commendably inherited by the aggregates. The corresponding NIR-II emissive AIEgen-based nanoparticles display high brightness, large Stokes shift, and superior photostability simultaneously, which can be applied for image-guided cancer and sentinel lymph node (SLN) surgery. This work thus provides a rational roadmap to improve the luminescence efficiency of NIR-II fluorophores for biomedical applications.


Assuntos
Nanopartículas , Neoplasias , Cirurgia Assistida por Computador , Humanos , Luminescência , Neoplasias/patologia , Nanopartículas/química
4.
J Am Chem Soc ; 146(7): 4851-4863, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346857

RESUMO

The abnormal evolution of membrane-less organelles into amyloid fibrils is a causative factor in many neurodegenerative diseases. Fundamental research on evolving organic aggregates is thus instructive for understanding the root causes of these diseases. In-situ monitoring of evolving molecular aggregates with built-in fluorescence properties is a reliable approach to reflect their subtle structural variation. To increase the sensitivity of real-time monitoring, we presented organic aggregates assembled by TPAN-2MeO, which is a triphenyl acrylonitrile derivative. TPAN-2MeO showed a morphological evolution with distinct turn-on emission. Upon rapid nanoaggregation, it formed non-emissive spherical aggregates in the kinetically metastable state. Experimental and simulation results revealed that the weak homotypic interactions between the TPAN-2MeO molecules liberated their molecular motion for efficient non-radiative decay, and the strong heterotypic interactions between TPAN-2MeO and water stabilized the molecular geometry favorable for the non-fluorescent state. After ultrasonication, the decreased heterotypic interactions and increased homotypic interactions acted synergistically to allow access to the emissive thermodynamic equilibrium state with a decent photoluminescence quantum yield (PLQY). The spherical aggregates were eventually transformed into micrometer-sized blocklike particles. Under mechanical stirring, the co-assembly of TPAN-2MeO and Pluronic F-127 formed uniform fluorescent platelets, inducing a significant enhancement in PLQY. These results decipher the stimuli-triggered structural variation of organic aggregates with concurrent sensitive fluorescence response and pave the way for a deep understanding of the evolutionary events of biogenic aggregates.


Assuntos
Amiloide , Água , Fluorescência
5.
Nat Commun ; 15(1): 170, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167652

RESUMO

Practical photodynamic therapy calls for high-performance, less O2-dependent, long-wavelength-light-activated photosensitizers to suit the hypoxic tumor microenvironment. Iridium-based photosensitizers exhibit excellent photocatalytic performance, but the in vivo applications are hindered by conventional O2-dependent Type-II photochemistry and poor absorption. Here we show a general metallopolymerization strategy for engineering iridium complexes exhibiting Type-I photochemistry and enhancing absorption intensity in the blue to near-infrared region. Reactive oxygen species generation of metallopolymer Ir-P1, where the iridium atom is covalently coupled to the polymer backbone, is over 80 times higher than that of its mother polymer without iridium under 680 nm irradiation. This strategy also works effectively when the iridium atom is directly included (Ir-P2) in the polymer backbones, exhibiting wide generality. The metallopolymer nanoparticles exhibiting efficient O2•- generation are conjugated with integrin αvß3 binding cRGD to achieve targeted photodynamic therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Irídio/química , Hipóxia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Polímeros/uso terapêutico , Microambiente Tumoral
6.
Angew Chem Int Ed Engl ; 63(4): e202308951, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38052724

RESUMO

Nanohybrid photosystems have advantages in converting solar energy into electricity, while natural photosystems based solar-powered energy-storage device is still under developed. Here, we fabricate a new kind of photo-rechargeable zinc-ion hybrid capacitor (ZHC) benefiting from light-harvesting carbon dots (CDs) and natural thylakoids for realizing solar energy harvesting and storage simultaneously. Under solar light irradiation, the embedded CDs in thylakoids (CDs/Thy) can convert the less absorbed green light into highly absorbed red light for thylakoids, besides, Förster resonance energy transfer (FRET) between CDs and Thy also occurs, which facilitates the photoelectrons generation during thylakoids photosynthesis, thereby resulting in 6-fold photocurrent output in CDs/Thy hybrid photosystem, compared to pristine thylakoids. Using CDs/Thy as the photocathode in ZHCs, the photonic hybrid capacitor shows photoelectric conversion and storage features. CDs can improve the photo-charging voltage response of ZHCs to ≈1.2 V with a remarkable capacitance enhancement of 144 % under solar light. This study provides a promising strategy for designing plant-based photonic and electric device for solar energy harvesting and storage.

7.
Small ; : e2307785, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054790

RESUMO

Manipulation of persistent charges in semiconductor nanostructure is the key point to obtain quantum bits towards the application of quantum memory and information devices. However, realizing persistent charge storage in semiconductor nano-systems is still very challenge due to the disturbance from crystal defects and environment conditions. Herein, the two-photon persistent charging induced long-lasting afterglow and charged exciton formation are observed in CsPbBr3 perovskite nanocrystals (NCs) confined in glass host with effective lifetime surpassing one second, where the glass inclosure provides effective protection. A method combining the femtosecond and second time-resolved transient absorption spectroscopy is explored to determine the persistent charging possibility of perovskite NCs unambiguously. Meanwhile, with temperature-dependent spectroscopy, the underlying mechanism of this persistent charging is elucidated. A two-channel carrier transfer model is proposed involving athermal quantum tunneling and slower thermal-assisted channel. On this basis, two different information storage devices are demonstrated with the memory time exceeding two hours under low-temperature condition. These results provide a new strategy to realize persistent charging in perovskite NCs and deepen the understanding of the underlying carrier kinetics, which may pave an alternative way towards novel information memory and optical data storage applications.

8.
ACS Nano ; 17(19): 18952-18964, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37729494

RESUMO

Breast cancer (BC) remains a significant global health challenge for women despite advancements in early detection and treatment. Isoliquiritigenin (ISL), a compound derived from traditional Chinese medicine, has shown potential as an anti-BC therapy, but its low bioavailability and poor water solubility restrict its effectiveness. In this study, we created theranostic nanoparticles consisting of ISL and a near-infrared (NIR) photosensitizer, TBPI, which displays aggregation-induced emission (AIE), with the goal of providing combined chemo- and photodynamic therapies (PDT) for BC. Initially, we designed an asymmetric organic molecule, TBPI, featuring a rotorlike triphenylamine as the donor and 1-methylpyridinium iodide as the acceptor, which led to the production of reactive oxygen species in mitochondria. We then combined TBPI with ISL and encapsulated them in DSPE-PEG-RGD nanoparticles to produce IT-PEG-RGD nanoparticles, which showed high affinity for BC, better intersystem crossing (ISC) efficiency, and Förster resonance energy transfer (FRET) between TBPI and ISL. In both 4T1 BC cell line and a 4T1 tumor-bearing BC mouse model, the IT-PEG-RGD nanoparticles demonstrated excellent drug delivery, synergistic antitumor effects, enhanced tumor-killing efficacy, and reduced drug dosage and side effects. Furthermore, we exploited the optical properties of TBPI with ISL to reveal the release process and distribution of nanoparticles in cells. This study provides a valuable basis for further exploration of IT-PEG-RGD nanoparticles and their anticancer mechanisms, highlighting the potential of theranostic nanoparticles in BC treatment.

9.
Adv Mater ; 35(28): e2212126, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37163976

RESUMO

The carrier lifetime is one of the key parameters for perovskite solar cells (PSCs). However, it is still a great challenge to achieve long carrier lifetimes in perovskite films that are comparable with perovskite crystals owning to the large trap density resulting from the unavoidable defects in grain boundaries and surfaces. Here, by regulating the electronic structure with the developed 2-thiopheneformamidinium bromide (ThFABr) combined with the unique film structure of 2D perovskite layer caped 2D/3D polycrystalline perovskite film, an ultralong carrier lifetime exceeding 20 µs and carrier diffusion lengths longer than 6.5 µm are achieved. These excellent properties enable the ThFA-based devices to yield a champion efficiency of 24.69% with a minimum VOC loss of 0.33 V. The unencapsulated device retains ≈95% of its initial efficiency after 1180 h by max power point (MPP) tracking under continuous light illumination. This work provides important implications for structured 2D/(2D/3D) perovskite films combined with unique FA-based spacers to achieve ultralong carrier lifetime for high-performance PSCs and other optoelectronic applications.


Assuntos
Distrofias Hereditárias da Córnea , Compostos Inorgânicos , Humanos , Compostos de Cálcio , Óxidos
10.
Adv Mater ; 35(35): e2302705, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37216626

RESUMO

Noninvasive fluorescence (FL) imaging and high-performance photocatalytic therapy (PCT) are opposing optical properties that are difficult to combine in a single material system. Herein, a facile approach to introducing oxygen-related defects in carbon dots (CDs) via post-oxidation with 2-iodoxybenzoic acid is reported, in which some nitrogen atoms are substituted by oxygen atoms. Unpaired electrons in these oxygen-related defects rearrange the electronic structure of the oxidized CDs (ox-CDs), resulting in an emerging near-infrared (NIR) absorption band. These defects not only contribute to enhanced NIR bandgap emission but also act as trappers for photoexcited electrons to promote efficient charge separation on the surface, leading to abundant photo-generated holes on the ox-CDs surface under visible-light irradiation. Under white LED torch irradiation, the photo-generated holes oxidize hydroxide to hydroxyl radicals in the acidification of the aqueous solution. In contrast, no hydroxyl radicals are detected in the ox-CDs aqueous solution under 730 nm laser irradiation, indicating noninvasive NIR FL imaging potential. Utilizing the Janus optical properties of the ox-CDs, the in vivo NIR FL imaging of sentinel lymph nodes around tumors and efficient photothermal enhanced tumor PCT are demonstrated.


Assuntos
Neoplasias , Oxigênio , Humanos , Oxigênio/química , Carbono/química , Fototerapia , Luz , Neoplasias/terapia , Água , Corantes
11.
Inorg Chem ; 62(15): 5920-5930, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37017463

RESUMO

Triplet photovoltaic materials have been rarely investigated in organic solar cells (OSCs) because the role and mechanism of triplet excitons are still unclear. Cyclometalated heavy metal complexes with triplet features are expected to increase exciton diffusion lengths and improve exciton dissociation in OSCs, while the power conversion efficiencies (PCEs) of their bulk-heterojunction (BHJ) OSCs are still limited to <4%. We herein report an octahedral homoleptic tris-Ir(III) complex TBz3Ir as a donor material for BHJ OSCs with a PCE of over 11%. In comparison with the planar organic TBz ligand and heteroleptic TBzIr, TBz3Ir demonstrates the highest PCE and best device stability in both fullerene- and non-fullerene-based devices, owing to the long triplet lifetime, enhanced optical absorption, increased charge transport, and improved film morphology. From transient absorption, triplet excitons were deduced to participate in the photoelectric conversion process. In particular, the more significant 3D structure of TBz3Ir induces an unusual film morphology in TBz3Ir:Y6 blends, showing obviously large domain sizes suitable for triplet excitons. Thus, a high PCE of 11.35% with a high circuit current density of 24.17 mA cm-2 and a fill factor of 0.63 is achieved for small-molecular Ir complex-based BHJ OSCs.

12.
Small ; 19(31): e2206667, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36651015

RESUMO

Obesity is a major global health problem that significantly increases the risk of many other diseases. Herein, a facile method of suppressing lipogenesis and obesity using L-arginine-functionalized carbon dots (L-Arg@CDots) is reported. The prepared CDots with a negative surface charge form stronger bonds than D-arginine and lysine with L-Arg in water. The L-Arg@CDots in the aqueous solution offer a high photoluminescence quantum yield of 23.6% in the red wavelength region. The proposed L-Arg functionalization strategy not only protects the red emission of the CDots from quenching by water molecules but also enhances the intracellular uptake of L-Arg to reduce lipogenesis. Injection of L-Arg@CDots can reduce the body weight increase in ob/ob mice by suppressing their food intake and shrinking the white adipose tissue cells, thereby significantly inhibiting obesity.


Assuntos
Carbono , Pontos Quânticos , Camundongos , Animais , Carbono/química , Obesidade , Arginina , Pontos Quânticos/química
13.
Small ; 19(31): e2204158, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36216592

RESUMO

It is important to reveal the luminescence mechanisms of carbon dots (CDs). Herein, CDs with two types of optical centers are synthesized from citric acid in formamide by a solvothermal method, and show high photoluminescence quantum yield reaching 42%. Their green/yellow emission exhibits pronounced vibrational structure and high resistance toward photobleaching, while broad red photoluminescence is sensitive to solvents, temperature, and UV-IR. Under UV-IR, the red emission is gradually bleached due to the photoinduced dehydration of the deprotonated surface of CDs in dimethyl sulfoxide, while this process is hindered in water. From the analysis of steady-state and time-resolved photoluminescence and transient absorption data together with density functional theory calculations, the green/ yellow emission is assigned to conjugated sp2 -domains (core state) similar to organic dye derivatives stacked within disk-shaped CDs; and the broad red emission-to oxygen-containing groups bound to sp2 -domains (surface state), whereas energy transfer from the core to the surface state can happen.

14.
Nat Commun ; 13(1): 6935, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376328

RESUMO

Controlling the high-power laser transmittance is built on the diverse manipulation of multiple nonlinear absorption (NLA) processes in the nonlinear optical (NLO) materials. According to standard saturable absorption (SA) and reverse saturable absorption (RSA) model adapted for traditional semiconductor materials, the coexistence of SA and RSA will result in SA induced transparency at low laser intensity, yet switch to RSA with pump fluence increasing. Here, we observed, in contrast, an unusual RSA to SA conversion in quasi-two-dimensional (2D) perovskite film with a low threshold around 2.6 GW cm-2. With ultrafast transient absorption (TA) spectra measurement, such abnormal NLA is attributed to the competition between excitonic absorption enhancement and non-thermalized carrier induced bleaching. TA singularity from non-thermalized "Fermi Sea" is observed in quasi-2D perovskite film, indicating an ultrafast carrier thermalization within 100 fs. Moreover, the comparative study between the 2D and 3D perovskites uncovers the crucial role of hot-carrier effect to tune the NLA response. The ultrafast carrier cooling of quasi-2D perovskite is pointed out as an important factor to realize such abnormal NLA conversion process. These results provide fresh insights into the NLA mechanisms in low-dimensional perovskites, which may pave a promising way to diversify the NLO material applications.

15.
ACS Appl Mater Interfaces ; 14(46): 52270-52278, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350786

RESUMO

Black arsenic-phosphorus (b-AsP), an alloy containing black phosphorus and arsenic in the form of b-AsxP1-x, has a broadly tunable band gap changing with the chemical ratios of As and P. Although mid-infrared photodetectors and mode-locked or Q-switched pulse lasers based on b-AsP (mostly b-As0.83P0.17) are investigated, the potential of this family of materials for near-infrared photonic and optoelectronic applications at telecommunication bands is not fully explored. Here, we have verified a multifunctional fiber device based on b-As0.4P0.6 nanosheets for highly responsive photodetection and dual-wavelength ultrafast pulse generation at around 1550 nm. The fiber laser with a saturable absorber (SA) based on b-As0.4P0.6 nanosheets can output dual-wavelength mode-locking pulses with a larger bandwidth and spectral separation than those based on other two-dimensional (2D) materials. Remarkably, it is found that the b-As0.4P0.6-based photodetector can achieve a high responsivity of 10,200 A/W at 1550 nm and a peak responsivity of 2.29 × 105 A/W at 980 nm. Our work suggests that b-As0.4P0.6 shows great potential in ultrafast photonics, dual-comb spectroscopy, and infrared signal detection.

16.
Small ; 18(47): e2203536, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36229405

RESUMO

The interface of perovskite solar cells (PSCs) plays a significant role in influencing their performance, yet there is still scarce research focusing on their difficult-to-expose bottom interfaces. Herein, ethylammonium bromide (EABr) is introduced into the bottom interface and its passivation effects are studied directly. First, EABr can improve substrate wettability, which is beneficial for the perovskite-film deposition. By lifting off the perovskite film spontaneously from the substrate, it is found that EABr can significantly reduce the amount of unreacted PbI2 at the bottom interface. These PbI2 crystals have been recently identified as a major defect source and degradation site for perovskite film. Meanwhile, EABr also lifts the valence band maximum at the bottom side of perovskite from -5.38 to -5.09 eV, facilitating better hole transfer. Such a improvement is also verified by the study of charge carrier dynamics. Through introducing EABr, all photovoltaic parameters of the inverted PSCs are improved, and their power conversion efficiency (PCE) increases from 20.41% to 21.06%. The study highlights the importance of direct characterization of the bottom interface for a better passivation effect.

17.
Nat Commun ; 13(1): 6229, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266279

RESUMO

Mixed-dimensional 2D/3D halide perovskite solar cells promise high stability but practically deliver poor power conversion efficiency, and the 2D HP component has been held as the culprit because its intrinsic downsides (ill charge conductivity, wider bandgap, and strong exciton binding) were intuitively deemed to hinder carrier transport. Herein, we show that the 2D HP fragments, in fact, allow free migration of carriers in darkness but only block the carrier transport under illumination. While surely limiting the photovoltaic performance, such photoinduced carrier blocking effect is unexplainable by the traditional understanding above but is found to stem from the trap-filling-enhanced built-in potential of the 2D/3D HP interface. By parsing the depth-profile nanoscopic phase arrangement of the mixed-dimensional 2D/3D HP film for solar cells and revealing a photoinduced potential barrier up to several hundred meV, we further elucidate how the photoinduced carrier blocking mechanism jeopardizes the short-circuit current and fill factor.

18.
ACS Appl Mater Interfaces ; 14(2): 3284-3292, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34989549

RESUMO

Inverted perovskite solar cells (PSCs) have gained rapid progress and increasing research interest in recent years. The poly (triarylamine) (PTAA) is the most frequently used semiconductor in the hole-transporting layer (HTL) in inverted PSCs for its favorable highest occupied molecular orbital energy level (-5.2 eV), excellent carrier mobility, and low-temperature solution processability. However, its intrinsic hydrophobic property hinders the growth of high-quality perovskite on the PTAA film, which is one of the main obstacles that limits the further development of inverted PSCs. Herein, a donor-acceptor-donor type organic molecule, 4,4',4″-(1-hexyl-1H-dithieno [3',2':3,4; 2″,3″:5,6] benzo[1,2-d] imidazole-2,5,8-triyl) tris (N,N-bis(4-methoxyphenyl) aniline) (denoted as M2), is employed to modify the surface of PTAA. The PTAA/M2 composite hole transport layer facilitates the growth of perovskite films due to ameliorated hydrophobic property of PTAA. PTAA/M2 also exhibits enhanced hole mobility and conductivity than pristine PTAA. With enhanced crystallinity and hole extraction ability, using PTAA/M2 instead of pure PTAA as HTL, the power-conversion efficiency of inverted PSC increases from 18.67% to 20.23%. Furthermore, its operational stability is also enhanced. Our methodology carves out a novel path for addressing the hydrophobic issue of PTAA and improving the efficiency and photostability of inverted PSCs.

19.
Opt Express ; 29(21): 34810-34825, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809262

RESUMO

Solar water splitting by photoelectrochemical (PEC) reactions is promising for hydrogen production. The gold nanoparticles (AuNPs) are often applied to promote the visible response of wideband photocatalysts. However, in a typical TiO2/AuNPs structure, the opposite transfer direction of excited electrons between AuNPs and TiO2 under visible light and UV light severely limits the solar PEC performance. Here we present a unique Pt/TiO2/Cu2O/NiO/AuNPs photocathode, in which the NiO hole transport layer (HTL) is inserted between AuNPs and Cu2O to achieve unidirectional transport of charge carriers and prominent plasmon-induced resonance energy transfer (PIRET) between AuNPs and Cu2O. The measured applied bias photon-to-current efficiency and the hydrogen production rate under AM 1.5G illumination can reach 1.5% and 16.4 µmol·cm-2·h-1, respectively. This work is original in using the NiO film as the PIRET spacer and provides a promising photoelectrode for energy-efficient solar water splitting.

20.
J BUON ; 26(4): 1694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34565050

RESUMO

Retraction of "Lycopsamine inhibits the proliferation of human lung cancer cells via induction of apoptosis and autophagy and suppression of interleukin-2", by Zhengang Yu, Guifang Guo, Bingzhe Wang. JBUON 2020;25(5):2358-2363; PMID: 33277856 Following the publication of the above article, readers drew to our attention that part of the data was unreliable: Figures of this article appeared in other articles (by totally different authors). The authors were requested to provide the raw data and were also asked for an explanation to account for these concerns, but the Editorial Office did not receive any reply. Given above, we decided to retract this article. Authors were informed of the retraction. We thank the readers for bringing this matter to our attention. We apologize for any inconvenience it may cause.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...