Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985661

RESUMO

Mitochondria have a crucial role in regulating energy metabolism and their dysfunction has been linked to tumorigenesis. Cancer diagnosis and intervention have a great interest in the development of new agents that target biomolecules within mitochondria. However, monitoring and modulating mitochondria RNA (mtRNA), an essential component in mitochondria, in cells is challenging due to limited functional research and the absence of targeting agents. In this study, we designed and synthesized a fluorescent quinolinium derivative, QUCO-1, which actively lit up with mtRNA in both normal and cancer cells in vitro. Additionally, we evaluated the function of QUCO-1 as an mtRNA ligand and found that it effectively induced severe mitochondrial dysfunction and OXPHOS inhibition in RKO colorectal cancer cells. Treatment with QUCO-1 resulted in apoptosis, cell cycle blockage at the G2/M phase, and the effective inhibition of cell proliferation. Our findings suggest that QUCO-1 has great potential as a promising probe and therapeutic agent for mtRNA, with the potential for treating colorectal cancer.


Assuntos
Neoplasias Colorretais , Mitocôndrias , Humanos , RNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proliferação de Células , Apoptose , Corantes Fluorescentes/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral
2.
J Med Chem ; 65(18): 12346-12366, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36053318

RESUMO

The development of triple-negative breast cancer (TNBC) is highly associated with G-quadruplex (G4); thus, targeting G4 is a potential strategy for TNBC therapy. Because concomitant histone deacetylases (HDAC) inhibition could amplify the impact of G4-targeting compounds, we designed and synthesized two novel series of G4/HDAC dual-targeting compounds by connecting the zinc-binding pharmacophore of HDAC inhibitors to the G4-targeting isaindigotone scaffold (1). Among the new compounds, a6 with the potent HDAC inhibitory and G4 stabilizing activity could induce more DNA G4 formation than SAHA and 1 in TNBC cells. Remarkably, a6 caused more G4-related DNA damage and G4-related differentially expressed genes, consistent with its effect on disrupting the cell cycle, invasion, and glycolysis. Furthermore, a6 significantly suppresses the proliferation of various TNBC cells and the MDA-MB-231 xenograft model without evident toxicity. Our study suggests a novel strategy for TNBC therapeutics through dual-targeting HDAC and G4.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , DNA/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...