Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cytogenet ; 10: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878824

RESUMO

BACKGROUND: Homozygous mutations and deletions of the microcephalin gene (MCPH1; OMIM *607117) have been identified as a cause of autosomal recessive primary microcephaly and intellectual disability (MIM #251200). Previous studies in families of Asian descent suggest that the severity of the phenotype may vary based on the extent of the genomic alteration. We report chromosome microarray (CMA) findings and the first described family study of a patient with primary microcephaly in a consanguineous Hispanic family. CASE PRESENTATION: The proband, a boy born at full-term to consanguineous parents from Mexico, presented at 35 months of age with microcephaly, abnormal brain MRI findings, underdeveloped right lung, almond-shaped eyes, epicanthal folds, bilateral esotropia, low hairline, large ears, smooth philtrum, thin upper lip, and developmental delay. MRI of the brain showed a small dermoid or lipoma (without mass effect) within the interpeduncular cistern and prominent arachnoid granulation. The underdeveloped right lung was managed with long-acting inhaled corticosteroids. Otherwise the proband did not have any other significant medical history. The proband had 2 older brothers, ages 14 and 16, from the same consanguineous parents. The 14-year-old brother had a phenotype similar to that of the proband, while both parents and the oldest brother did not have the same phenotypic findings as the proband. The SNP-based CMA analysis of the proband detected a homozygous 250-kb microdeletion at 8p23.2p23.1, extending from 6,061,169 to 6,310,738 bp [hg19]. This genomic alteration encompasses the first 8 exons of MCPH1. Follow-up studies detected the same homozygous deletion in the affected brother, segregating with microcephaly and intellectual disability. Regions of homozygosity (ROHs) were also observed in the affected brother. Since ROHs are associated with an increased risk for recessive disorders, presence of ROH may also contribute to the phenotype of the affected brothers. The parents were both hemizygous for the deletion. CONCLUSION: Here we report a homozygous deletion of multiple exons of the MCPH1 gene that was associated with primary microcephaly and intellectual disability in a Hispanic family. In the context of previous studies, our results support the idea that deletions involving multiple exons cause a more severe phenotype than point mutations.

2.
Eur J Hum Genet ; 23(5): 663-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25118026

RESUMO

Copy neutral segments with allelic homozygosity, also known as regions of homozygosity (ROHs), are frequently identified in cases interrogated by oligonucleotide single-nucleotide polymorphism (oligo-SNP) microarrays. Presence of ROHs may be because of parental relatedness, chromosomal recombination or rearrangements and provides important clues regarding ancestral homozygosity, consanguinity or uniparental disomy. In this study of 14 574 consecutive cases, 832 (6%) were found to harbor one or more ROHs over 10 Mb, of which 651 cases (78%) had multiple ROHs, likely because of identity by descent (IBD), and 181 cases (22%) with ROHs involving a single chromosome. Parental relatedness was predicted to be first degree or closer in 5%, second in 9% and third in 19%. Of the 181 cases, 19 had ROHs for a whole chromosome revealing uniparental isodisomy (isoUPD). In all, 25 cases had significant ROHs involving a single chromosome; 5 cases were molecularly confirmed to have a mixed iso- and heteroUPD15 and 1 case each with segmental UPD9pat and segmental UPD22mat; 17 cases were suspected to have a mixed iso- and heteroUPD including 2 cases with small supernumerary marker and 2 cases with mosaic trisomy. For chromosome 15, 12 (92%) of 13 molecularly studied cases had either Prader-Willi or Angelman syndrome. Autosomal recessive disorders were confirmed in seven of nine cases from eight families because of the finding of suspected gene within a ROH. This study demonstrates that ROHs are much more frequent than previously recognized and often reflect parental relatedness, ascertain autosomal recessive diseases or unravel UPD in many cases.


Assuntos
Homozigoto , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Criança , Pré-Escolar , Aberrações Cromossômicas , Consanguinidade , Família , Feminino , Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Incidência , Doenças Inflamatórias Intestinais/genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Adulto Jovem
3.
Mol Cytogenet ; 7: 33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914406

RESUMO

BACKGROUND: Cytogenetic evaluation of products of conception (POC) for chromosomal abnormalities is central to determining the cause of pregnancy loss. We compared the test success rates in various specimen types and the frequencies of chromosomal abnormalities detected by G-banding analysis with those found by Oligo-SNP chromosomal microarray analysis (CMA). We evaluated the benefit of CMA testing in cases of failed culture growth. METHODS: Conventional cytogenetic results of 5457 consecutive POC specimens were reviewed and categorized as placental villi, fetal parts, and unspecified POC tissue. The CMA was performed on 268 cases. Of those, 32 cases had concurrent G-banding results. The remaining 236 cases included 107 cases with culture failure and 129 cases evaluated by CMA alone. RESULTS: The overall POC culture success rate was 75%, with the lowest for fetal parts (37.4%) and the highest for placental villi (81%). The abnormality rate was 58% for placental villi, but only 25% for fetal parts. Of the abnormalities detected, the most common were aneuploidies, including trisomy 16, triploidy, monosomy X, trisomy 22, trisomy 21 and trisomy 15, while the least encountered aneuploidies were trisomy 1, trisomy 19 and monosomies (except monosomy 21). Overall, POC specimens studied by CMA were successful in 89.6% of cases and yielded a 44.6% abnormality rate. CONCLUSIONS: Placental villi yielded higher rates of culture success and a higher percentage of abnormal karyotypes than did other specimen types. The Oligo-SNP CMA method has demonstrated a viable alternative to the G-banding method in view of its advantages in detection of submicroscopic genomic aberrations, shorter turnaround time due to elimination of time required for culture and a higher test success rate.

4.
Mol Cytogenet ; 5(1): 29, 2012 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-22682421

RESUMO

BACKGROUND: Neocentromeres are rare human chromosomal aberrations in which a new centromere has formed in a previously non-centromeric location. We report the finding of a structurally abnormal X chromosome with a neocentromere in a 15-year-old girl with clinical features suggestive of Turner syndrome, including short stature and primary amenorrhea. RESULT: G-banded chromosome analysis revealed a mosaic female karyotype involving two abnormal cell lines. One cell line (84% of analyzed metaphases) had a structurally abnormal X chromosome (duplication of the long arm and deletion of the short arm) and a normal X chromosome. The other cell line (16% of cells) exhibited monosomy X. C-banding studies were negative for the abnormal X chromosome. FISH analysis revealed lack of hybridization of the abnormal X chromosome with both the X centromere-specific probe and the "all human centromeres" probe, a pattern consistent with lack of the X chromosome endogenous centromere. A FISH study using an XIST gene probe revealed the presence of two XIST genes, one on each long arm of the iso(Xq), required for inactivation of the abnormal X chromosome. R-banding also demonstrated inactivation of the abnormal X chromosome. An assay for centromeric protein C (CENP-C) was positive on both the normal and the abnormal X chromosomes. The position of CENP-C in the abnormal X chromosome defined a neocentromere, which explains its mitotic stability. The karyotype is thus designated as 46,X,neo(X)(qter- > q12::q12- > q21.2- > neo- > q21.2- > qter)[42]/45,X[8], which is consistent with stigmata of Turner syndrome. The mother of this patient has a normal karyotype; however, the father was not available for study. CONCLUSION: To our knowledge, this is the first case of mosaic Turner syndrome involving an analphoid iso(Xq) chromosome with a proven neocentromere among 90 previously described cases with a proven neocentromere.

5.
Mol Cytogenet ; 5: 3, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22248351

RESUMO

Spectral karyotyping is a diagnostic tool that allows visualization of chromosomes in different colors using the FISH technology and a spectral imaging system. To assess the value of spectral karyotyping analysis for identifying constitutional supernumerary marker chromosomes or derivative chromosomes at a national reference laboratory, we reviewed the results of 179 consecutive clinical samples (31 prenatal and 148 postnatal) submitted for spectral karyotyping. Over 90% of the cases were requested to identify either small supernumerary marker chromosomes (sSMCs) or chromosomal exchange material detected by G-banded chromosome analysis. We also reviewed clinical indications of those cases with marker chromosomes in which chromosomal origin was identified by spectral karyotyping. Our results showed that spectral karyotyping identified the chromosomal origin of marker chromosomes or the source of derivative chromosomal material in 158 (88%) of the 179 clinical cases; the identification rate was slightly higher for postnatal (89%) compared to prenatal (84%) cases. Cases in which the origin could not be identified had either a small marker chromosome present at a very low level of mosaicism (< 10%), or contained very little euchromatic material. Supplemental FISH analysis confirmed the spectral karyotyping results in all 158 cases. Clinical indications for prenatal cases were mainly for marker identification after amniocentesis. For postnatal cases, the primary indications were developmental delay and multiple congenital anomalies (MCA). The most frequently encountered markers were of chromosome 15 origin for satellited chromosomes, and chromosomes 2 and 16 for non-satellited chromosomes. We were able to obtain pertinent clinical information for 47% (41/88) of cases with an identified abnormal chromosome. We conclude that spectral karyotyping is sufficiently reliable for use and provides a valuable diagnostic tool for establishing the origin of supernumerary marker chromosomes or derivative chromosomal material that cannot be identified with standard cytogenetic techniques.

6.
J Pediatr Genet ; 1(2): 115-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27625811

RESUMO

In a screen of patients by fluorescence in-situ hybridization and array comparative genomic hybridization in the past two years (July 2007--July 2009), we identified two patients with duplications in the 22q11.22-23, occurring outside the common DiGeorge syndrome/valocardiofacial syndrome region. Fluorescent in-situ hybridization, multiplex ligation-dependent probe amplification and high density bacterial artificial chromosomes and oligo arrays were used to identify the extent of the duplications. In one patient the duplication extended from LCR22-E/5 to LCR22-H/8, which is similar to recently described 22q11.2 distal duplications, while in the second patient, a de novo duplication was identified extending between LCR22-E/5 to LCR22-F/6. The second proband also harbored a de novo 15q14 duplication, complicating phenotype interpretation. The patients were affected with speech delay and autistic features, but neither reported cardiac concern or dysmorphic features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...