Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38683709

RESUMO

Multiview attribute graph clustering aims to cluster nodes into disjoint categories by taking advantage of the multiview topological structures and the node attribute values. However, the existing works fail to explicitly discover the inherent relationships in multiview topological graph matrices while considering different properties between the graphs. Besides, they cannot well handle the sparse structure of some graphs in the learning procedure of graph embeddings. Therefore, in this article, we propose a novel contrastive multiview attribute graph clustering (CMAGC) with adaptive encoders method. Within this framework, the adaptive encoders concerning different properties of distinct topological graphs are chosen to integrate multiview attribute graph information by checking whether there exists high-order neighbor information or not. Meanwhile, the number of layers of the GCN encoders is selected according to the prior knowledge related to the characteristics of different topological graphs. In particular, the feature-level and cluster-level contrastive learning are conducted on the multiview soft assignment representations, where the union of the first-order neighbors from the corresponding graph pairs is regarded as the positive pairs for data augmentation and the sparse neighbor information problem in some graphs can be well dealt with. To the best of our knowledge, it is the first time to explicitly deal with the inherent relationships from the interview and intraview perspectives. Extensive experiments are conducted on several datasets to verify the superiority of the proposed CMAGC method compared with the state-of-the-art methods.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38408012

RESUMO

Community detection has become a prominent task in complex network analysis. However, most of the existing methods for community detection only focus on the lower order structure at the level of individual nodes and edges and ignore the higher order connectivity patterns that characterize the fundamental building blocks within the network. In recent years, researchers have shown interest in motifs and their role in network analysis. However, most of the existing higher order approaches are based on shallow methods, failing to capture the intricate nonlinear relationships between nodes. In order to better fuse higher order and lower order structural information, a novel deep learning framework called motif-based contrastive learning for community detection (MotifCC) is proposed. First, a higher order network is constructed based on motifs. Subnetworks are then obtained by removing isolated nodes, addressing the fragmentation issue in the higher order network. Next, the concept of contrastive learning is applied to effectively fuse various kinds of information from nodes, edges, and higher order and lower order structures. This aims to maximize the similarity of corresponding node information, while distinguishing different nodes and different communities. Finally, based on the community structure of subnetworks, the community labels of all nodes are obtained by using the idea of label propagation. Extensive experiments on real-world datasets validate the effectiveness of MotifCC.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37962995

RESUMO

The integrity of training data, even when annotated by experts, is far from guaranteed, especially for non-independent and identically distributed (non-IID) datasets comprising both in-and out-of-distribution samples. In an ideal scenario, the majority of samples would be in-distribution, while samples that deviate semantically would be identified as out-of-distribution and excluded during the annotation process. However, experts may erroneously classify these out-of-distribution samples as in-distribution, assigning them labels that are inherently unreliable. This mixture of unreliable labels and varied data types makes the task of learning robust neural networks notably challenging. We observe that both in-and out-of-distribution samples can almost invariably be ruled out from belonging to certain classes, aside from those corresponding to unreliable ground-truth labels. This opens the possibility of utilizing reliable complementary labels that indicate the classes to which a sample does not belong. Guided by this insight, we introduce a novel approach, termed gray learning (GL), which leverages both ground-truth and complementary labels. Crucially, GL adaptively adjusts the loss weights for these two label types based on prediction confidence levels. By grounding our approach in statistical learning theory, we derive bounds for the generalization error, demonstrating that GL achieves tight constraints even in non-IID settings. Extensive experimental evaluations reveal that our method significantly outperforms alternative approaches grounded in robust statistics.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37410646

RESUMO

Recent developments in multiagent consensus problems have heightened the role of network topology when the agent number increases largely. The existing works assume that the convergence evolution typically proceeds over a peer-to-peer architecture where agents are treated equally and communicate directly with perceived one-hop neighbors, thus resulting in slower convergence speed. In this article, we first extract the backbone network topology to provide a hierarchical organization over the original multiagent system (MAS). Second, we introduce a geometric convergence method based on the constraint set (CS) under periodically extracted switching-backbone topologies. Finally, we derive a fully decentralized framework named hierarchical switching-backbone MAS (HSBMAS) that is designed to conduct agents converge to a common stable equilibrium. Provable connectivity and convergence guarantees of the framework are provided when the initial topology is connected. Extensive simulation results on different-type and varying-density topologies have shown the superiority of the proposed framework.

5.
Med Oncol ; 40(8): 240, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37442847

RESUMO

Platelet-derived growth factor receptor-ß (PDGFRß) is a critical type III receptor tyrosine kinase family member, which is involved in Wilms' tumour (WT) metastasis and aerobic glycolysis. The role of PDGFRß in tumour angiogenesis has not been fully elucidated. Here, we examined the effect of PDGFRß on angiogenesis in WT. First, the NCBI database integrated three datasets, GSE2712, GSE11151, and GSE73209, to screen differentially expressed genes. The R language was used to analyse the correlation between PDGFRB and vascular endothelial growth factor (VEGF). The results showed that PDGFRB, encoding PDGFRß, was upregulated in WT, and its level was correlated with VEGFA expression. Next, PDGFRß expression was inhibited by small interfering RNA (siRNA) or activated with the exogenous ligand PDGF-BB. The expression and secretion of the angiogenesis elated factor VEGFA in WT G401 cells were detected using Western blotting and ELISA, respectively. The effects of conditioned medium from G401 cells on endothelial cell viability, migration, invasion, the total length of the tube, and the number of fulcrums were investigated. To further explore the mechanism of PDGFRß in the angiogenesis of WT, the expression of VEGFA was detected after blocking the phosphatidylinositol-3-kinase (PI3K) pathway and inhibiting the expression of PKM2, a key enzyme of glycolysis. The results indicated that PDGFRß regulated the process of tumour angiogenesis through the PI3K/AKT/PKM2 pathway. Therefore, this study provides a novel therapeutic strategy to target PDGFRß and PKM2 to inhibit glycolysis and anti-angiogenesis, thus, developing a new anti-vascular therapy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Tumor de Wilms , Humanos , Becaplermina/metabolismo , Becaplermina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
6.
IEEE Trans Cybern ; 53(10): 6636-6648, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37021985

RESUMO

Multiparty learning is an indispensable technique to improve the learning performance via integrating data from multiple parties. Unfortunately, directly integrating multiparty data could not meet the privacy-preserving requirements, which then induces the development of privacy-preserving machine learning (PPML), a key research task in multiparty learning. Despite this, the existing PPML methods generally cannot simultaneously meet multiple requirements, such as security, accuracy, efficiency, and application scope. To deal with the aforementioned problems, in this article, we present a new PPML method based on the secure multiparty interactive protocol, namely, the multiparty secure broad learning system (MSBLS) and derive its security analysis. To be specific, the proposed method employs the interactive protocol and random mapping to generate the mapped features of data, and then uses efficient broad learning to train the neural network classifier. To the best of our knowledge, this is the first attempt for privacy computing method that jointly combines secure multiparty computing and neural network. Theoretically, this method can ensure that the accuracy of the model will not be reduced due to encryption, and the calculation speed is very fast. Three classical datasets are adopted to verify our conclusion.

7.
IEEE J Biomed Health Inform ; 27(7): 3187-3197, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37018100

RESUMO

Electroencephalogram (EEG) is an important technology to explore the central nervous mechanism of tinnitus. However, it is hard to obtain consistent results in many previous studies for the high heterogeneity of tinnitus. In order to identify tinnitus and provide theoretical guidance for the diagnosis and treatment, we propose a robust, data-efficient multi-task learning framework called Multi-band EEG Contrastive Representation Learning (MECRL). In this study, we collect resting-state EEG data from 187 tinnitus patients and 80 healthy subjects to generate a high-quality large-scale EEG dataset on tinnitus diagnosis, and then apply the MECRL framework on the generated dataset to obtain a deep neural network model which can distinguish tinnitus patients from the healthy controls accurately. Subject-independent tinnitus diagnosis experiments are conducted and the result shows that the proposed MECRL method is significantly superior to other state-of-the-art baselines and can be well generalized to unseen topics. Meanwhile, visual experiments on key parameters of the model indicate that the high-classification weight electrodes of tinnitus' EEG signals are mainly distributed in the frontal, parietal and temporal regions. In conclusion, this study facilitates our understanding of the relationship between electrophysiology and pathophysiology changes of tinnitus and provides a new deep learning method (MECRL) to identify the neuronal biomarkers in tinnitus.


Assuntos
Zumbido , Humanos , Zumbido/diagnóstico , Eletroencefalografia/métodos , Redes Neurais de Computação , Biomarcadores
8.
Artigo em Inglês | MEDLINE | ID: mdl-37030820

RESUMO

Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the k -means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via unified and discrete bipartite graph learning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL.

9.
IEEE Trans Neural Netw Learn Syst ; 34(2): 973-986, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34432638

RESUMO

Most existing multiview clustering methods are based on the original feature space. However, the feature redundancy and noise in the original feature space limit their clustering performance. Aiming at addressing this problem, some multiview clustering methods learn the latent data representation linearly, while performance may decline if the relation between the latent data representation and the original data is nonlinear. The other methods which nonlinearly learn the latent data representation usually conduct the latent representation learning and clustering separately, resulting in that the latent data representation might be not well adapted to clustering. Furthermore, none of them model the intercluster relation and intracluster correlation of data points, which limits the quality of the learned latent data representation and therefore influences the clustering performance. To solve these problems, this article proposes a novel multiview clustering method via proximity learning in latent representation space, named multiview latent proximity learning (MLPL). For one thing, MLPL learns the latent data representation in a nonlinear manner which takes the intercluster relation and intracluster correlation into consideration simultaneously. For another, through conducting the latent representation learning and consensus proximity learning simultaneously, MLPL learns a consensus proximity matrix with k connected components to output the clustering result directly. Extensive experiments are conducted on seven real-world datasets to demonstrate the effectiveness and superiority of the MLPL method compared with the state-of-the-art multiview clustering methods.

10.
IEEE Trans Cybern ; 53(5): 3060-3074, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34767522

RESUMO

Community detection in multiview networks has drawn an increasing amount of attention in recent years. Many approaches have been developed from different perspectives. Despite the success, the problem of community detection in adversarial multiview networks remains largely unsolved. An adversarial multiview network is a multiview network that suffers an adversarial attack on community detection in which the attackers may deliberately remove some critical edges so as to hide the underlying community structure, leading to the performance degeneration of the existing approaches. To address this problem, we propose a novel approach, called higher order connection enhanced multiview modularity (HCEMM). The main idea lies in enhancing the intracommunity connection of each view by means of utilizing the higher order connection structure. The first step is to discover the view-specific higher order Microcommunities (VHM-communities) from the higher order connection structure. Then, for each view of the original multiview network, additional edges are added to make the nodes in each of its VHM-communities fully connected like a clique, by which the intracommunity connection of the multiview network can be enhanced. Therefore, the proposed approach is able to discover the underlying community structure in a multiview network while recovering the missing edges. Extensive experiments conducted on 16 real-world datasets confirm the effectiveness of the proposed approach.

11.
IEEE Trans Neural Netw Learn Syst ; 34(11): 8310-8323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35213315

RESUMO

A variety of methods have been proposed for modeling and mining dynamic complex networks, in which the topological structure varies with time. As the most popular and successful network model, the stochastic block model (SBM) has been extended and applied to community detection, link prediction, anomaly detection, and evolution analysis of dynamic networks. However, all current models based on the SBM for modeling dynamic networks are designed at the community level, assuming that nodes in each community have the same dynamic behavior, which usually results in poor performance on temporal community detection and loses the modeling of node abnormal behavior. To solve the above-mentioned problem, this article proposes a hierarchical Bayesian dynamic SBM (HB-DSBM) for modeling the node-level and community-level dynamic behavior in a dynamic network synchronously. Based on the SBM, we introduce a hierarchical Dirichlet generative mechanism to associate the global community evolution with the microscopic transition behavior of nodes near-perfectly and generate the observed links across the dynamic networks. Meanwhile, an effective variational inference algorithm is developed and we can easy to infer the communities and dynamic behaviors of the nodes. Furthermore, with the two-level evolution behaviors, it can identify nodes or communities with abnormal behavior. Experiments on simulated and real-world networks demonstrate that HB-DSBM has achieved state-of-the-art performance on community detection and evolution. In addition, abnormal evolutionary behavior and events on dynamic networks can be effectively identified by our model.

12.
IEEE Trans Neural Netw Learn Syst ; 34(12): 9671-9684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35324448

RESUMO

Session-based recommendation tries to make use of anonymous session data to deliver high-quality recommendations under the condition that user profiles and the complete historical behavioral data of a target user are unavailable. Previous works consider each session individually and try to capture user interests within a session. Despite their encouraging results, these models can only perceive intra-session items and cannot draw upon the massive historical relational information. To solve this problem, we propose a novel method named global graph guided session-based recommendation (G3SR). G3SR decomposes the session-based recommendation workflow into two steps. First, a global graph is built upon all session data, from which the global item representations are learned in an unsupervised manner. Then, these representations are refined on session graphs under the graph networks, and a readout function is used to generate session representations for each session. Extensive experiments on two real-world benchmark datasets show remarkable and consistent improvements of the G3SR method over the state-of-the-art methods, especially for cold items.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36459612

RESUMO

Incomplete multiview clustering (IMC) methods have achieved remarkable progress by exploring the complementary information and consensus representation of incomplete multiview data. However, to our best knowledge, none of the existing methods attempts to handle the uncoupled and incomplete data simultaneously, which affects their generalization ability in real-world scenarios. For uncoupled incomplete data, the unclear and partial cross-view correlation introduces the difficulty to explore the complementary information between views, which results in the unpromising clustering performance for the existing multiview clustering methods. Besides, the presence of hyperparameters limits their applications. To fill these gaps, a novel uncoupled IMC (UIMC) method is proposed in this article. Specifically, UIMC develops a joint framework for feature inferring and recoupling. The high-order correlations of all views are explored by performing a tensor singular value decomposition (t-SVD)-based tensor nuclear norm (TNN) on recoupled and inferred self-representation matrices. Moreover, all hyperparameters of the UIMC method are updated in an exploratory manner. Extensive experiments on six widely used real-world datasets have confirmed the superiority of the proposed method in handling the uncoupled incomplete multiview data compared with the state-of-the-art methods.

14.
IEEE Trans Cybern ; PP2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264737

RESUMO

Multiview clustering plays an important part in unsupervised learning. Although the existing methods have shown promising clustering performances, most of them assume that the data is completely coupled between different views, which is unfortunately not always ensured in real-world applications. The clustering performance of these methods drops dramatically when handling the uncoupled data. The main reason is that: 1) cross-view correlation of uncoupled data is unclear, which limits the existing multiview clustering methods to explore the complementary information between views and 2) features from different views are uncoupled with each other, which may mislead the multiview clustering methods to partition data into wrong clusters. To address these limitations, we propose a tensor approach for uncoupled multiview clustering (T-UMC) in this article. Instead of pairwise correlation, T-UMC chooses a most reliable view by view-specific silhouette coefficient (VSSC) at first, and then couples the self-representation matrix of each view with it by pairwise cross-view coupling learning. After that, by integrating recoupled self-representation matrices into a third-order tensor, the high-order correlations of all views are explored with tensor singular value decomposition (t-SVD)-based tensor nuclear norm (TNN). And the view-specific local structures of each individual view are also preserved with the local structure learning scheme with manifold learning. Besides, the physical meaning of view-specific coupling matrix is also discussed in this article. Extensive experiments on six commonly used benchmark datasets have demonstrated the superiority of the proposed method compared with the state-of-the-art multiview clustering methods.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35839201

RESUMO

As a challenging problem, incomplete multi-view clustering (MVC) has drawn much attention in recent years. Most of the existing methods contain the feature recovering step inevitably to obtain the clustering result of incomplete multi-view datasets. The extra target of recovering the missing feature in the original data space or common subspace is difficult for unsupervised clustering tasks and could accumulate mistakes during the optimization. Moreover, the biased error is not taken into consideration in the previous graph-based methods. The biased error represents the unexpected change of incomplete graph structure, such as the increase in the intra-class relation density and the missing local graph structure of boundary instances. It would mislead those graph-based methods and degrade their final performance. In order to overcome these drawbacks, we propose a new graph-based method named Graph Structure Refining for Incomplete MVC (GSRIMC). GSRIMC avoids recovering feature steps and just fully explores the existing subgraphs of each view to produce superior clustering results. To handle the biased error, the biased error separation is the core step of GSRIMC. In detail, GSRIMC first extracts basic information from the precomputed subgraph of each view and then separates refined graph structure from biased error with the help of tensor nuclear norm. Besides, cross-view graph learning is proposed to capture the missing local graph structure and complete the refined graph structure based on the complementary principle. Extensive experiments show that our method achieves better performance than other state-of-the-art baselines.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35895654

RESUMO

Graph learning has emerged as a promising technique for multi-view clustering due to its ability to learn a unified and robust graph from multiple views. However, existing graph learning methods mostly focus on the multi-view consistency issue, yet often neglect the inconsistency between views, which makes them vulnerable to possibly low-quality or noisy datasets. To overcome this limitation, we propose a new multi-view graph learning framework, which for the first time simultaneously and explicitly models multi-view consistency and inconsistency in a unified objective function, through which the consistent and inconsistent parts of each single-view graph as well as the unified graph that fuses the consistent parts can be iteratively learned. Though optimizing the objective function is NP-hard, we design a highly efficient optimization algorithm that can obtain an approximate solution with linear time complexity in the number of edges in the unified graph. Furthermore, our multi-view graph learning approach can be applied to both similarity graphs and dissimilarity graphs, which lead to two graph fusion-based variants in our framework. Experiments on 12 multi-view datasets have demonstrated the robustness and efficiency of the proposed approach. The code is available at https://github.com/youweiliang/Multi-view_Graph_Learning.

17.
Ann Clin Lab Sci ; 52(1): 101-108, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35181623

RESUMO

OBJECTIVE: To investigate the effect of dichloroacetate (DCA) on Wilms' tumor (WT) G401 cells. METHODS: CCK-8 assay was used to detect the influence of DCA on G401 cells viability and 10 mmol/L DCA was selected for subsequent experiments. The expression of glycolysis-related enzymes, such as hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), lactic acid dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase (PDH), were detected by qRT-PCR and western blot. The extracellular lactic acid and glucose concentrations were measured by the lactic acid assay kit and glucose oxidase method kit respectively. Flow cytometry was used to detect the effect of DCA on G401 cells apoptosis. The invasion and migration ability of G401 cells were detected by Transwell assay and wound-healing assay. RESULTS: The results showed that DCA reduced glycolysis-related enzymes expression, inhibited lactic acid production, and glucose consumption. DCA also suppressed cells growth, induced cells apoptosis and inhibited cells invasion and migration. CONCLUSION: Inhibition of aerobic glycolysis by DCA can reduce the viability of G401 cells, promote cells apoptosis and inhibit cells invasion and migration. Therefore, aerobic glycolysis may be a potential therapeutic target for Wilms' tumor.


Assuntos
Neoplasias Renais , Tumor de Wilms , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Humanos
18.
Cell Biol Int ; 46(6): 907-921, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35165984

RESUMO

Wilms' tumor (WT) is the most common pediatric renal malignancy. PDGFRß belongs to the type III receptor tyrosine kinase family and is known to be involved in tumor metastasis and angiogenesis. Here, we studied the effect and underlying mechanism of PDGFRß on WT G401 cells. Transwell assay and wound-healing assay were used to detect the effect of PDGFRß on G401 cells invasion and migration. Western blot and immunofluorescence were used to detect the expression of EMT-related genes. The expression of PI3K/AKT/mTOR pathway proteins was detected by Western blot. The relationship between PDGFRß and aerobic glycolysis was studied by assessing the expression of glycolysis-related enzymes detected by qRT-PCR and Western blot. The activity of HK, PK, and LDH was detected by corresponding enzyme activity kits. The concentration of lactic acid and glucose was detected by Lactic Acid Assay Kit and Glucose Assay Kit-glucose oxidase method separately. To investigate the mechanism of PDGFRß in the development of WT, the changes of glucose and lactic acid were analyzed after blocking PI3K pathway, aerobic glycolysis, or PDGFRß. The key enzyme was screened by Western blot and glucose metabolism experiment after HK2, PKM2, and PDK1 were inhibited. The results showed that PDGFRß promoted the EMT process by modulating aerobic glycolysis through PI3K/AKT/mTOR pathway in which PKM2 plays a key role. Therefore, our study of the mechanism of PDGFRß in G401 cells provides a new target for the treatment of WT.


Assuntos
Neoplasias Renais , Tumor de Wilms , Becaplermina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Criança , Transição Epitelial-Mesenquimal , Glucose , Glicólise , Humanos , Ácido Láctico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tumor de Wilms/metabolismo
19.
IEEE Trans Neural Netw Learn Syst ; 33(11): 6726-6736, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34081589

RESUMO

To alleviate the sparsity issue, many recommender systems have been proposed to consider the review text as the auxiliary information to improve the recommendation quality. Despite success, they only use the ratings as the ground truth for error backpropagation. However, the rating information can only indicate the users' overall preference for the items, while the review text contains rich information about the users' preferences and the attributes of the items. In real life, reviews with the same rating may have completely opposite semantic information. If only the ratings are used for error backpropagation, the latent factors of these reviews will tend to be consistent, resulting in the loss of a large amount of review information. In this article, we propose a novel deep model termed deep rating and review neural network (DRRNN) for recommendation. Specifically, compared with the existing models that adopt the review text as the auxiliary information, DRRNN additionally considers both the target rating and target review of the given user-item pair as ground truth for error backpropagation in the training stage. Therefore, we can keep more semantic information of the reviews while making rating predictions. Extensive experiments on four publicly available datasets demonstrate the effectiveness of the proposed DRRNN model in terms of rating prediction.


Assuntos
Redes Neurais de Computação , Semântica
20.
IEEE Trans Cybern ; 52(11): 12231-12244, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33961570

RESUMO

The rapid emergence of high-dimensional data in various areas has brought new challenges to current ensemble clustering research. To deal with the curse of dimensionality, recently considerable efforts in ensemble clustering have been made by means of different subspace-based techniques. However, besides the emphasis on subspaces, rather limited attention has been paid to the potential diversity in similarity/dissimilarity metrics. It remains a surprisingly open problem in ensemble clustering how to create and aggregate a large population of diversified metrics, and furthermore, how to jointly investigate the multilevel diversity in the large populations of metrics, subspaces, and clusters in a unified framework. To tackle this problem, this article proposes a novel multidiversified ensemble clustering approach. In particular, we create a large number of diversified metrics by randomizing a scaled exponential similarity kernel, which are then coupled with random subspaces to form a large set of metric-subspace pairs. Based on the similarity matrices derived from these metric-subspace pairs, an ensemble of diversified base clusterings can be thereby constructed. Furthermore, an entropy-based criterion is utilized to explore the cluster wise diversity in ensembles, based on which three specific ensemble clustering algorithms are presented by incorporating three types of consensus functions. Extensive experiments are conducted on 30 high-dimensional datasets, including 18 cancer gene expression datasets and 12 image/speech datasets, which demonstrate the superiority of our algorithms over the state of the art. The source code is available at https://github.com/huangdonghere/MDEC.


Assuntos
Benchmarking , Neoplasias , Algoritmos , Análise por Conglomerados , Humanos , Neoplasias/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...