Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1366855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685914

RESUMO

As wireless communication devices gain popularity, concerns about the potential risks of environmental exposure to complex frequency electromagnetic radiation (EMR) on mental health have become a public health issue. Historically, EMR research has predominantly focused on single- frequency electromagnetic waves, neglecting the study of multi-frequency electromagnetic waves, which more accurately represent everyday life. To address these concerns, our study compared the emotional effects of single-frequency and dual-frequency EMR while exploring potential molecular mechanisms and intervention targets. Our results revealed that single-frequency EMR at 2.65 or 0.8 GHz did not induce anxiety-like behavior in mice. However, exposure to dual-frequency EMR at 2.65/0.8 GHz significantly led to anxiety-like behavior in mice. Further analysis of mouse sera revealed substantial increases in corticosterone and corticotrophin releasing hormone levels following exposure to 2.65/0.8 GHz EMR. Transcriptome sequencing indicated a significant decrease in the expression of Cnr1, encoding cannabinoid receptor 1 Type (CB1R), in the cerebral. This finding was consistently verified through western blot analysis, revealing a substantial reduction in CB1R content. Additionally, a significant decrease in the endocannabinoid 2-arachidonoylglycerol was observed in the cerebral cortex. Remarkably, administering the cannabinoid receptor agonist Win55-212-2 significantly alleviated the anxiety-like behavior, and the cannabinoid receptor antagonist AM251 effectively counteracted the anti-anxiety effects of Win55-212-2. In summary, our research confirmed that dual-frequency EMR is more likely to induce anxiety-like behavior in mice than single-frequency EMR, with implications for the hypothalamic-pituitary-adrenal axis and the endocannabinoid system. Furthermore, our findings suggest that Win55-212-2 may represent a novel avenue for researching and developing anti-EMR drugs.

2.
J Glob Antimicrob Resist ; 36: 36-40, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072241

RESUMO

OBJECTIVES: Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study aimed to determine the prevalence of colistin-resistant mcr-like genes in Enterobacteriales in aquatic products, which may be contribute to the transfer of ARGs in water environments. METHODS: The mcr-1-positive Escherichia coli were recovered from 123 freshwater fish and 34 cultured crocodile cecum samples from 10 farmers' markets in Guangdong, China. Minimum inhibitory concentration (MIC) was determined using the agar dilution method. Genotyping was performed using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Conjugation assay was carried out to investigate the transferability of mcr-1. Genomic information was obtained by whole genome sequencing (WGS) and bioinformatic analysis. RESULTS: Forty-four mcr-1 positive isolates showed co-resistance to tetracycline, trimethoprim/sulfamethoxazole, and gentamicin, while they were all sensitive to tigecycline, meropenem, and amikacin. They were typed into sixteen PFGE clusters. ST10 and ST117 were the most popular sequence types, followed by ST1114. S1-PFGE verified the presence of the mcr-1 gene on plasmids in sizes of ∼60 kb (n = 1) and ∼240 kb (n = 3). Whole genome sequencing-based analysis identified mcr-1 integrated in IncHI2 plasmid (n = 3), IncI2 plasmid (n = 2), and bacterial chromosome in two copies (n = 1). In addition to mcr-1, they carried several other antibiotic resistance genes, such as blaCTX-M-14, fosA3, and aac(6')-Ib-cr. CONCLUSION: These data suggest that aquatic products are an important antibiotic resistance reservoir and highlight possible risks regarding food safety.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Tipagem de Sequências Multilocus , Proteínas de Escherichia coli/genética , Antagonistas de Receptores de Angiotensina , Ecossistema , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia
3.
Microbiol Spectr ; 11(3): e0030923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154736

RESUMO

Streptococcus suis is a zoonotic pathogen that causes disease in humans after exposure to infected pigs or pig-derived food products. In this study, we examined the serotype distribution, antimicrobial resistance phenotypes and genotypes, integrative and conjugative elements (ICEs), and associated genomic environments of S. suis isolates from humans and pigs in China from 2008 to 2019. We identified isolates of 13 serotypes, predominated by serotype 2 (40/96; 41.7%), serotype 3 (10/96; 10.4%), and serotype 1 (6/96; 6.3%). Whole-genome sequencing analysis revealed that these isolates possessed 36 different sequence types (STs), and ST242 and ST117 were the most prevalent. Phylogenetic analysis revealed possible animal and human clonal transmission, while antimicrobial susceptibility testing indicated high-level resistance to macrolides, tetracyclines, and aminoglycosides. These isolates carried 24 antibiotic resistance genes (ARGs) that conferred resistance to 7 antibiotic classes. The antibiotic resistance genotypes were directly correlated with the observed phenotypes. We also identified ICEs in 10 isolates, which were present in 4 different genetic environments and possessed differing ARG combinations. We also predicted and confirmed by PCR analysis the existence of a translocatable unit (TU) in which the oxazolidinone resistance gene optrA was flanked by IS1216E elements. One-half (5/10) of the ICE-carrying strains could be mobilized by conjugation. A comparison of the parental recipient with an ICE-carrying transconjugant in a mouse in vivo thigh infection model indicated that the ICE strain could not be eliminated with tetracycline treatment. S. suis therefore poses a significant challenge to global public health and requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation. IMPORTANCE S. suis is a serious zoonotic pathogen. In this study, we investigated the epidemiological and molecular characteristics of 96 S. suis isolates from 10 different provinces of China from 2008 to 2019. A subset of these isolates (10) carried ICEs that were able to be horizontally transferred among isolates of different S. suis serotypes. A mouse thigh infection model revealed that ICE-facilitated ARG transfer promoted resistance development. S. suis requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation.


Assuntos
Oxazolidinonas , Streptococcus suis , Humanos , Suínos , Animais , Camundongos , Streptococcus suis/genética , Filogenia , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia
5.
Brain Res ; 1679: 134-143, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180226

RESUMO

The popularization of microwave raised concerns about its influence on health including cognitive function which is associated greatly with dendritic spines plasticity. SNK-SPAR is a molecular pathway for neuronal homeostatic plasticity during chronically elevated activity. In this study, Wistar rats were exposed to microwaves (30 mW/cm2 for 6 min, 3 times/week for 6 weeks). Spatial learning and memory function, distribution of dendritic spines, ultrastructure of the neurons and their dendritic spines in hippocampus as well as the related critical molecules of SNK-SPAR pathway were examined at different time points after microwave exposure. There was deficiency in spatial learning and memory in rats, loss of spines in granule cells and shrinkage of mature spines in pyramidal cells, accompanied with alteration of ultrastructure of hippocampus neurons. After exposure to 30 mW/cm2 microwave radiation, the up-regulated SNK induced decrease of SPAR and PSD-95, which was thought to cause the changes mentioned above. In conclusion, the microwave radiation led to shrinkage and even loss of dendritic spines in hippocampus by SNK-SPAR pathway, resulting in the cognitive impairments.


Assuntos
Espinhas Dendríticas/efeitos da radiação , Proteínas Ativadoras de GTPase/metabolismo , Hipocampo/citologia , Micro-Ondas/efeitos adversos , Neurônios/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos da radiação , Animais , Espinhas Dendríticas/ultraestrutura , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/ultraestrutura , Hipocampo/efeitos da radiação , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Microscopia Eletrônica de Transmissão , Neurônios/efeitos da radiação , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Coloração pela Prata , Sinapses/metabolismo , Sinapses/efeitos da radiação , Sinapses/ultraestrutura , Fatores de Tempo , Regulação para Cima/efeitos da radiação
6.
Biomed Environ Sci ; 30(12): 927-931, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29335064

RESUMO

Little information is available about the effects of exposure to pulsed microwaves on neuronal Ca2+ signaling under non-thermal conditions. In this study, rat pheochromocytoma (PC12) cells were exposed to pulsed microwaves for 6 min at a specific absorption rate (SAR) of 4 W/kg to assess possible real-time effects. During microwave exposure, free calcium dynamics in the cytosol, mitochondria, and nucleus of cells were monitored by time-lapse microfluorimetry using a genetically encoded calcium indicator (ratiometric-pericam, ratiometric-pericam-mt, and ratiometric-pericam-nu). We established a waveguide-based real-time microwave exposure system under accurately controlled environmental and dosimetric conditions and found no significant changes in the cytosolic, mitochondrial, or nuclear calcium levels in PC12 cells. These findings suggest that no dynamic changes occurred in [Ca2+]c, [Ca2+]m, or [Ca2+]n of PC12 cells at the non-thermal level.


Assuntos
Cálcio/metabolismo , Núcleo Celular/efeitos da radiação , Citosol/efeitos da radiação , Micro-Ondas , Mitocôndrias/efeitos da radiação , Animais , Núcleo Celular/metabolismo , Citosol/metabolismo , Microscopia Confocal , Mitocôndrias/metabolismo , Células PC12 , Ratos
7.
Mol Neurobiol ; 53(4): 2100-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25917873

RESUMO

Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm(2) for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position -217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation.


Assuntos
Micro-Ondas , Neurônios/patologia , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Sequência de Bases , Encéfalo/patologia , Proliferação de Células , Frequência do Gene/genética , Variação Genética , Genótipo , Masculino , Células PC12 , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar
8.
Physiol Behav ; 140: 236-46, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25542888

RESUMO

The increased use of microwaves raises concerns about its impact on health including cognitive function in which neurotransmitter system plays an important role. In this study, we focused on the serotonin system and evaluated the long term effects of chronic microwave radiation on cognition and correlated items. Wistar rats were exposed or sham exposed to 2.856GHz microwaves with the average power density of 5, 10, 20 or 30mW/cm(2) respectively for 6min three times a week up to 6weeks. At different time points after the last exposure, spatial learning and memory function, morphology structure of the hippocampus, electroencephalogram (EEG) and neurotransmitter content (amino acid and monoamine) of rats were tested. Above results raised our interest in serotonin system. Tryptophan hydroxylase 1 (TPH1) and monoamine oxidase (MAO), two important rate-limiting enzymes in serotonin synthesis and metabolic process respectively, were detected. Expressions of serotonin receptors including 5-HT1A, 2A, 2C receptors were measured. We demonstrated that chronic exposure to microwave (2.856GHz, with the average power density of 5, 10, 20 and 30mW/cm(2)) could induce dose-dependent deficit of spatial learning and memory in rats accompanied with inhibition of brain electrical activity, the degeneration of hippocampus neurons, and the disturbance of neurotransmitters, among which the increase of 5-HT occurred as the main long-term change that the decrease of its metabolism partly contributed to. Besides, the variations of 5-HT1AR and 5-HT2CR expressions were also indicated. The results suggested that in the long-term way, chronic microwave exposure could induce cognitive deficit and 5-HT system may be involved in it.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Transtornos Cognitivos/etiologia , Micro-Ondas/efeitos adversos , Serotonina/metabolismo , Animais , Encéfalo/patologia , Ondas Encefálicas/efeitos da radiação , Relação Dose-Resposta à Radiação , Eletroencefalografia , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Degeneração Neural/etiologia , Neurotransmissores/metabolismo , Ratos , Ratos Wistar , Tempo de Reação/efeitos da radiação , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Natação/psicologia , Tempo , Fatores de Tempo , Triptofano Hidroxilase/metabolismo
9.
Anal Bioanal Chem ; 404(1): 69-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22706401

RESUMO

There has been growing public concern regarding exposure to microwave fields as a potential human health hazard. This study aimed to identify sensitive biochemical indexes for the detection of injury induced by microwave exposure. Male Wistar rats were exposed to microwaves for 6 min per day, 5 days per week over a period of 1 month at an average power density of 5 mW/cm(2) (specific absorption rate of 2.1 W/kg). Urine specimens were collected over 24 h in metabolic cages at 7 days, 21 days, 2 months, and 6 months after exposure. (1)H NMR spectroscopy data were analyzed using multivariate statistical techniques. Urine metabolic profiles of rats after long-term microwave exposure were significantly differentiated from those of sham-treated controls using principal component analysis or partial least squares discriminant analysis. Significant differences in low molecular weight metabolites (acetate, succinate, citrate, ketoglutarate, glucose, taurine, phenylalanine, tyrosine, and hippurate) were identified in the 5 mW/cm(2) microwave exposure group compared with the sham-treated controls at 7 days, 21 days, and 2 months. Metabolites returned to normal levels by 6 months after exposure. These data indicated that these metabolites were related to the perturbations of energy metabolism particularly in the tricarboxylic acid cycle, and the metabolism of amino acids, monoamines, and choline in urine represent potential indexes for the detection of injury induced by long-term microwave exposure.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Micro-Ondas/efeitos adversos , Urina/química , Animais , Humanos , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...