Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3747, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702310

RESUMO

In malaria parasites, the regulation of mRNA translation, storage and degradation during development and life-stage transitions remains largely unknown. Here, we functionally characterized the DEAD-box RNA helicase PfDOZI in P. falciparum. Disruption of pfdozi enhanced asexual proliferation but reduced sexual commitment and impaired gametocyte development. By quantitative transcriptomics, we show that PfDOZI is involved in the regulation of invasion-related genes and sexual stage-specific genes during different developmental stages. PfDOZI predominantly participates in processing body-like mRNPs in schizonts but germ cell granule-like mRNPs in gametocytes to impose opposing actions of degradation and protection on different mRNA targets. We further show the formation of stress granule-like mRNPs during nutritional deprivation, highlighting an essential role of PfDOZI-associated mRNPs in stress response. We demonstrate that PfDOZI participates in distinct mRNPs to maintain mRNA homeostasis in response to life-stage transition and environmental changes by differentially executing post-transcriptional regulation on the target mRNAs.


Assuntos
RNA Helicases DEAD-box , Plasmodium falciparum , Proteínas de Protozoários , RNA Mensageiro , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Estágios do Ciclo de Vida/genética , RNA de Protozoário/metabolismo , RNA de Protozoário/genética , Estabilidade de RNA , Humanos , Malária Falciparum/parasitologia
2.
mSphere ; 9(4): e0014024, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564734

RESUMO

Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.


Assuntos
Reparo do DNA , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Replicação do DNA , Histonas/genética , Histonas/metabolismo , Regulação da Expressão Gênica
3.
iScience ; 27(4): 109602, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617559

RESUMO

It is a significant challenge to assess the functions of many uncharacterized genes in human malaria parasites. Here, we present a genetic screening tool to assess the contribution of essential genes from Plasmodium falciparum by the conditional CRISPR-/deadCas9-based interference and activation (i/a) systems. We screened both CRISPRi and CRISPRa sets, consisting of nine parasite lines per set targeting nine genes via their respective gRNAs. By conducting amplicon sequencing of gRNA loci, we identified the contribution of each targeted gene to parasite fitness upon drug (artemisinin, chloroquine) and stress (starvation, heat shock) treatment. The screening was highly reproducible, and the screening libraries were easily generated by transfection of mixed plasmids expressing different gRNAs. We demonstrated that this screening is straightforward, robust, and can provide a fast and efficient tool to study essential genes that have long presented a bottleneck in assessing their functions using existing genetic tools.

4.
EMBO J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600241

RESUMO

A versatile division of apicomplexan parasites and a dearth of conserved regulators have hindered the progress of apicomplexan cell cycle studies. While most apicomplexans divide in a multinuclear fashion, Toxoplasma gondii tachyzoites divide in the traditional binary mode. We previously identified five Toxoplasma CDK-related kinases (Crk). Here, we investigated TgCrk4 and its cyclin partner TgCyc4. We demonstrated that TgCrk4 regulates conventional G2 phase processes, such as repression of chromosome rereplication and centrosome reduplication, and acts upstream of the spindle assembly checkpoint. The spatial TgCyc4 dynamics supported the TgCrk4-TgCyc4 complex role in the coordination of chromosome and centrosome cycles. We also identified a dominant TgCrk4-TgCyc4 complex interactor, TgiRD1 protein, related to DNA replication licensing factor CDT1 but played no role in licensing DNA replication in the G1 phase. Our results showed that TgiRD1 also plays a role in controlling chromosome and centrosome reduplication. Global phosphoproteome analyses identified TgCrk4 substrates, including TgORC4, TgCdc20, TgGCP2, and TgPP2ACA. Importantly, the phylogenetic and structural studies suggest the Crk4-Cyc4 complex is limited to a minor group of the binary dividing apicomplexans.

5.
J Infect Dis ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041857

RESUMO

BACKGROUND: Plasmodium vivax presents a significant challenge for malaria elimination in the Greater Mekong Subregion (GMS). We evaluated the effectiveness of primaquine (PQ) for reducing relapses of vivax malaria. METHODS: Patients with uncomplicated P. vivax malaria from eastern Myanmar received chloroquine (CQ, 25 mg base/kg given in 3 days) plus unsupervised PQ (0.25 mg/kg/day for 14 days) without screening for glucose-6-phosphate dehydrogenase deficiency and were followed for a year. RESULTS: Totally 556 patients were enrolled to receive the CQ/PQ treatment from February 2012 to August 2013. During the follow-up, 38 recurrences were detected, presenting a cumulative rate of recurrence of 9.1% (95% confidence interval, 4.1-14.1%). Genotyping at the pvmsp1 and pvmsp3α loci by Amplicon deep sequencing and model prediction indicated that 13 of the 27 recurrences with genotyping data were likely due to relapses. Notably, all confirmed relapses occurred within the first six months. CONCLUSIONS: The unsupervised standard dose of PQ was highly effective as a radical cure for P. vivax malaria in eastern Myanmar. The high presumed effectiveness might have benefited from the health messages delivered during the enrollment and follow-up activities. Six-month follow-ups in the GMS are sufficient for detecting most relapses.

6.
Integr Zool ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014459

RESUMO

Based on a chromosome-level genome assembly, a burst of new genes with different structures but a similar testis-specific expression pattern was detected in tree sparrow.

7.
Genome Biol ; 24(1): 231, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845769

RESUMO

Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria parasites. The MalariaSED performance was validated by published ChIP-qPCR and TF motifs results. Applying MalariaSED to ~ 1.3 million variants shows that geographically differentiated noncoding variants are associated with parasite invasion and drug resistance. Further analysis reveals chromatin accessibility changes at Plasmodium falciparum rings are partly associated with artemisinin resistance. MalariaSED illuminates the potential functional roles of noncoding variants in malaria parasites.


Assuntos
Antimaláricos , Aprendizado Profundo , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Malária/tratamento farmacológico , Malária/parasitologia , Cromatina , Resistência a Medicamentos/genética , Antimaláricos/farmacologia , Proteínas de Protozoários/genética
8.
Antimicrob Agents Chemother ; 67(10): e0057723, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37702516

RESUMO

Plasmodium falciparum causes the most severe malaria and is exposed to various environmental and physiological stresses in the human host. Given that GCN5 plays a critical role in regulating stress responses in model organisms, we aimed to elucidate PfGCN5's function in stress responses in P. falciparum. The protein level of PfGCN5 was substantially induced under three stress conditions [heat shock, low glucose starvation, and dihydroartemisinin, the active metabolite of artemisinin (ART)]. With a TetR-DOZI conditional knockdown (KD) system, we successfully down-regulated PfGCN5 to ~50% and found that KD parasites became more sensitive to all three stress conditions. Transcriptomic analysis via RNA-seq identified ~1,000 up- and down-regulated genes in the wild-type (WT) and KD parasites under these stress conditions. Importantly, DHA induced transcriptional alteration of many genes involved in many aspects of stress responses, which were heavily shared among the altered genes under heat shock and low glucose conditions, including ART-resistance-related genes such as K13 and coronin. Based on the expression pattern between WT and KD parasites under three stress conditions, ~300-400 genes were identified to be involved in PfGCN5-dependent, general, and stress-condition-specific responses with high levels of overlaps among three stress conditions. Notably, using ring-stage survival assay, we found that KD or inhibition of PfGCN5 could sensitize the ART-resistant parasites to the DHA treatment. All these indicate that PfGCN5 is pivotal in regulating general and ART-resistance-related stress responses in malaria parasites, implicating PfGCN5 as a potential target for malaria intervention.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Glucose/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Resistência a Medicamentos/genética
9.
Commun Biol ; 6(1): 659, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349497

RESUMO

Protein arginine methyltransferases (PRMTs) regulate many important cellular processes, such as transcription and RNA processing in model organisms but their functions in human malaria parasites are not elucidated. Here, we characterize PfPRMT5 in Plasmodium falciparum, which catalyzes symmetric dimethylation of histone H3 at R2 (H3R2me2s) and R8, and histone H4 at R3 in vitro. PfPRMT5 disruption results in asexual stage growth defects primarily due to lower invasion efficiency of the merozoites. Transcriptomic analysis reveals down-regulation of many transcripts related to invasion upon PfPRMT5 disruption, in agreement with H3R2me2s being an active chromatin mark. Genome-wide chromatin profiling detects extensive H3R2me2s marking of genes of different cellular processes, including invasion-related genes in wildtype parasites and PfPRMT5 disruption leads to the depletion of H3R2me2s. Interactome studies identify the association of PfPRMT5 with invasion-related transcriptional regulators such as AP2-I, BDP1, and GCN5. Furthermore, PfPRMT5 is associated with the RNA splicing machinery, and PfPRMT5 disruption caused substantial anomalies in RNA splicing events, including those for invasion-related genes. In summary, PfPRMT5 is critical for regulating parasite invasion and RNA splicing in this early-branching eukaryote.


Assuntos
Merozoítos , Plasmodium falciparum , Animais , Humanos , Plasmodium falciparum/metabolismo , Merozoítos/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/metabolismo
10.
Microbiol Spectr ; 11(3): e0416422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154686

RESUMO

Transmission of the deadly malaria parasite Plasmodium falciparum from humans to mosquitoes is achieved by specialized intraerythrocytic sexual forms called gametocytes. Though the crucial regulatory mechanisms leading to gametocyte commitment have recently come to light, networks of genes that control sexual development remain to be elucidated. Here, we report a pooled-mutant screen to identify genes associated with gametocyte development in P. falciparum. Our results categorized genes that modulate gametocyte progression as hypoproducers or hyperproducers of gametocytes, and the in-depth analysis of individual clones confirmed phenotypes in sexual commitment rates and putative functions in gametocyte development. We present a new set of genes that have not been implicated in gametocytogenesis before and demonstrate the potential of forward genetic screens in isolating genes impacting parasite sexual biology, an exciting step toward the discovery of new antimalarials for a globally significant pathogen. IMPORTANCE Blocking human-to-vector transmission is an essential step toward malaria elimination. Gametocytes are solely responsible for achieving this transmission and represent an opportunity for therapeutic intervention. While these falciform-shaped parasite stages were first discovered in the 1880s, our understanding of the genetic determinants responsible for their formation and molecular mechanisms that drive their development is limited. In this work, we developed a scalable screening methodology with piggyBac mutants to identify genes that influence the development of gametocytes in the most lethal human malaria parasite, P. falciparum. By doing so, we lay the foundation for large-scale functional genomic studies specifically designed to address remaining questions about sexual commitment, maturation, and mosquito infection in P. falciparum. Such functional genetic screens will serve to expedite the identification of essential pathways and processes for the development of novel transmission-blocking agents.


Assuntos
Culicidae , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Mosquitos Vetores/genética , Malária Falciparum/parasitologia , Fenótipo
11.
mSphere ; 8(4): e0015223, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37219373

RESUMO

The implementation of artemisinin (ART) combination therapies (ACTs) has greatly decreased deaths caused by Plasmodium falciparum malaria, but increasing ACT resistance in Southeast Asia and Africa could reverse this progress. Parasite population genetic studies have identified numerous genes, single-nucleotide polymorphisms (SNPs), and transcriptional signatures associated with altered artemisinin activity with SNPs in the Kelch13 (K13) gene being the most well-characterized artemisinin resistance marker. However, there is an increasing evidence that resistance to artemisinin in P. falciparum is not related only to K13 SNPs, prompting the need to characterize other novel genes that can alter ART responses in P. falciparum. In our previous analyses of P. falciparum piggyBac mutants, several genes of unknown function exhibited increased sensitivity to artemisinin that was similar to a mutant of K13. Further analysis of these genes and their gene co-expression networks indicated that the ART sensitivity cluster was functionally linked to DNA replication and repair, stress responses, and maintenance of homeostatic nuclear activity. In this study, we have characterized PF3D7_1136600, another member of the ART sensitivity cluster. Previously annotated as a conserved Plasmodium gene of unknown function, we now provide putative annotation of this gene as a Modulator of Ring Stage Translation (MRST). Our findings reveal that the mutagenesis of MRST affects gene expression of multiple translation-associated pathways during the early ring stage of asexual development via putative ribosome assembly and maturation activity, suggesting an essential role of MRST in protein biosynthesis and another novel mechanism of altering the parasite's ART drug response.IMPORTANCEPlasmodium falciparum malaria killed more than 600,000 people in 2021, though ACTs have been critical in reducing malaria mortality as a first-line treatment for infection. However, ACT resistance in Southeast Asia and emerging resistance in Africa are detrimental to this progress. Mutations to Kelch13 (K13) have been identified to confer increased artemisinin tolerance in field isolates, however, genes other than K13 are implicated in altering how the parasite responds to artemisinin prompts additional analysis. Therefore, in this study we have characterized a P. falciparum mutant clone with altered sensitivity to artemisinin and identified a novel gene (PF3D7_1136600) that is associated with alterations to parasite translational metabolism during critical timepoints for artemisinin drug response. Many genes of the P. falciparum genome remain unannotated, posing a challenge for drug-gene characterizations in the parasite. Therefore, through this study, we have putatively annotated PF3D7_1136600 as a novel MRST gene and have identified a potential link between MRST and parasite stress response mechanisms.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Artemisininas/farmacologia , Malária Falciparum/parasitologia
12.
Microbiol Spectr ; 11(3): e0501422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37067430

RESUMO

The antimalarial activity of the frontline drug artemisinin involves generation of reactive oxygen species (ROS) leading to oxidative damage of parasite proteins. To achieve homeostasis and maintain protein quality control in the overwhelmed parasite, the ubiquitin-proteasome system kicks in. Even though molecular markers for artemisinin resistance like pfkelch13 have been identified, the intricate network of mechanisms driving resistance remains to be elucidated. Here, we report a forward genetic screening strategy that enables a broader identification of genetic factors responsible for altering sensitivity to dihydroartemisinin (DHA) and a proteasome inhibitor, bortezomib (BTZ). Using a library of isogenic piggyBac mutants in P. falciparum, we defined phenotype-genotype associations influencing drug responses and highlighted shared mechanisms between the two processes, which mainly included proteasome-mediated degradation and the lipid metabolism genes. Additional transcriptomic analysis of a DHA/BTZ-sensitive piggyBac mutant showed it is possible to find differences between the two response mechanisms on the specific components for regulation of the exportome. Our results provide further insight into the molecular mechanisms of antimalarial drug resistance. IMPORTANCE Malaria control is seriously threatened by the emergence and spread of Plasmodium falciparum resistance to the leading antimalarial, artemisinin. The potent killing activity of artemisinin results from oxidative damage unleashed by free heme activation released by hemoglobin digestion. Although the ubiquitin-proteasome system is considered critical for parasite survival of this toxicity, the diverse genetic changes linked to artemisinin resistance are complex and, so far, have not included the ubiquitin-proteasome system. In this study, we use a systematic forward genetic approach by screening a library of P. falciparum random piggyBac mutants to decipher the genetic factors driving malaria parasite responses to the oxidative stress caused by antimalarial drugs. This study compares phenotype-genotype associations influencing dihydroartemisinin responses with the proteasome inhibitor bortezomib to delineate the role of ubiquitin-proteasome system. Our study highlights shared and unique pathways from the complex array of molecular processes critical for P. falciparum survival resulting from the oxidative damage of artemisinin.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Bortezomib/farmacologia , Bortezomib/metabolismo , Bortezomib/uso terapêutico , Metabolismo dos Lipídeos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Proteínas de Protozoários/genética , Artemisininas/farmacologia , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos/genética , Ubiquitina/metabolismo
13.
Nucleic Acids Res ; 51(8): 3918-3933, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37026483

RESUMO

DNA modifications are critical in fine-tuning the biological processes in model organisms. However, the presence of cytosine methylation (5mC) and the function of the putative DNA methyltransferase, PfDNMT2, in the human malaria pathogen, Plasmodium falciparum, remain controversial. Here, we revisited the 5mC in the parasite genome and the function of PfDNMT2. Low levels of genomic 5mC (0.1-0.2%) during asexual development were identified using a sensitive mass spectrometry procedure. Native PfDNMT2 displayed substantial DNA methylation activities, and disruption or overexpression of PfDNMT2 resulted in reduced or elevated genomic 5mC levels, respectively. PfDNMT2 disruption led to an increased proliferation phenotype, with the parasites having an extended schizont stage and producing a higher number of progenies. Consistent with PfDNMT2's interaction with an AP2 domain-containing transcription factor, transcriptomic analyses revealed that PfDNMT2 disruption led to a drastic alteration in the expression of many genes, some of which provided the molecular basis of enhanced proliferation after PfDNMT2 disruption. Furthermore, levels of tRNAAsp and its methylation rate at position C38, and the translation of a reporter containing an aspartate repeat were significantly reduced after PfDNMT2 disruption, while the levels of tRNAAsp and its C38 methylation were restored after complementation of PfDNMT2. Our study sheds new light on the dual function of PfDNMT2 during P. falciparum asexual development.


Assuntos
Metiltransferases , Plasmodium falciparum , Proteínas de Protozoários , DNA/genética , Metilação de DNA , Metiltransferases/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA de Transferência de Ácido Aspártico/genética
14.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865247

RESUMO

The mRNA-seq data analysis is a powerful technology for inferring information from biological systems of interest. Specifically, the sequenced RNA fragments are aligned with genomic reference sequences, and we count the number of sequence fragments corresponding to each gene for each condition. A gene is identified as differentially expressed (DE) if the difference in its count numbers between conditions is statistically significant. Several statistical analysis methods have been developed to detect DE genes based on RNA-seq data. However, the existing methods could suffer decreasing power to identify DE genes arising from overdispersion and limited sample size. We propose a new differential expression analysis procedure: heterogeneous overdispersion genes testing (DEHOGT) based on heterogeneous overdispersion modeling and a post-hoc inference procedure. DEHOGT integrates sample information from all conditions and provides a more flexible and adaptive overdispersion modeling for the RNA-seq read count. DEHOGT adopts a gene-wise estimation scheme to enhance the detection power of differentially expressed genes. DEHOGT is tested on the synthetic RNA-seq read count data and outperforms two popular existing methods, DESeq and EdgeR, in detecting DE genes. We apply the proposed method to a test dataset using RNAseq data from microglial cells. DEHOGT tends to detect more differently expressed genes potentially related to microglial cells under different stress hormones treatments.

15.
Sci Rep ; 13(1): 399, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624300

RESUMO

Artemisinin combination therapies (ACTs) have led to a significant decrease in Plasmodium falciparum malaria mortality. This progress is now threatened by emerging artemisinin resistance (ART-R) linked originally in SE Asia to polymorphisms in the Kelch propeller protein (K13) and more recently to several other seemingly unrelated genetic mutations. To better understand the parasite response to ART, we are characterizing a P. falciparum mutant with altered sensitivity to ART that was created via piggyBac transposon mutagenesis. The transposon inserted near the putative transcription start site of a gene defined as a "Plasmodium-conserved gene of unknown function," now functionally linked to K13 as the Kelch13 Interacting Candidate 5 protein (KIC5). Phenotype analysis of the KIC5 mutant during intraerythrocytic asexual development identified transcriptional changes associated with DNA stress response and altered mitochondrial metabolism, linking dysregulation of the KIC5 gene to the parasite's ability to respond to ART exposure. Through characterization of the KIC5 transcriptome, we hypothesize that this gene may be essential under ART exposure to manage gene expression of the wild-type stress response at early ring stage, thereby providing a better understanding of the parasite's processes that can alter ART sensitivity.


Assuntos
Antimaláricos , Artemisininas , Plasmodium falciparum , Antimaláricos/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
16.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711954

RESUMO

Plasmodium falciparum causes the most severe malaria and is exposed to various environmental and physiological stresses in the human host. Given that GCN5 plays a critical role in regulating stress responses in model organisms, we aimed to elucidate PfGCN5's function in stress responses in P. falciparum . The protein level of PfGCN5 was substantially induced under three stress conditions (heat shock, low glucose starvation, and dihydroartemisinin, the active metabolite of artemisinin (ART)). With a TetR-DOZI conditional knockdown (KD) system, we successfully down-regulated PfGCN5 to ∼50% and found that KD parasites became more sensitive to all three stress conditions. Transcriptomic analysis via RNA-seq identified ∼1,000 up-and down-regulated genes in the wildtype (WT) and KD parasites under these stress conditions. Importantly, DHA induced transcriptional alteration of many genes involved in many aspects of stress responses, which were heavily shared among the altered genes under heat shock and low glucose conditions, including ART-resistance-related genes such as K13 and coronin . Based on the expression pattern between WT and KD parasites under three stress conditions, ∼300-400 genes were identified to be involved in PfGCN5-dependent, general and stress-condition-specific responses with high levels of overlaps among three stress conditions. Notably, using ring-stage survival assay (RSA), we found that KD or inhibition of PfGCN5 could sensitize the ART-resistant parasites to the DHA treatment. All these indicate that PfGCN5 is pivotal in regulating general and ART-resistance-related stress responses in malaria parasites, implicating PfGCN5 as a potential target for malaria intervention. IMPORTANCE: Malaria leads to about half a million deaths annually and these casualties were majorly caused by the infection of Plasmodium falciparum . This parasite strives to survive by defending against a variety of stress conditions, such as malaria cyclical fever (heat shock), starvation due to low blood sugar (glucose) levels (hypoglycemia), and drug treatment. Previous studies have revealed that P. falciparum has developed unique stress responses to different stresses including ART treatment, and ART-resistant parasites harbor elevated stress responses. In this study, we provide critical evidence on the role of PfGCN5, a histone modifier, and a chromatin coactivator, in regulating general and stress-specific responses in malaria parasites, indicating that PfGCN5 can be used as a potential target for anti-malaria intervention.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33685900

RESUMO

Plasmodium falciparum from the Greater Mekong subregion has evolved resistance to the artemisinin-based combination therapy dihydroartemisinin and the partner drug piperaquine. To monitor the potential westward spread or independent evolution of piperaquine resistance, we evaluated the in vitro susceptibility of 120 P. falciparum isolates collected at the China-Myanmar border during 2007-2016. The parasite isolates displayed a relatively wide range of piperaquine susceptibility estimates. While 56.7% of the parasites showed bimodal drug response curves, all but five generated area-under-the-curve (AUC) estimates consistent with a susceptible phenotype. Using the piperaquine survival assay (PSA), 5.6% parasites showed reduced susceptibility. Of note, parasites from 2014-2016 showed the highest AUC value and the highest proportion with a bimodal curve, suggesting falling effectiveness in these later years. Unsupervised K-mean analysis of the combined data assigned parasites into three clusters and identified significant correlations between IC50, IC90, and AUC values. No parasites carried the E415G mutation in a putative exo-nuclease, new mutations in PfCRT, or amplification of the plasmepsin 2/3 genes, suggesting mechanisms of reduced piperaquine susceptibility that differ from those described in other countries of the region. The association of increased AUC, IC50, and IC90 values with major PfK13 mutations (F446I and G533S) suggests that piperaquine resistance may evolve in these PfK13 genetic backgrounds. Additionally, the Pfmdr1 F1226Y mutation was associated with significantly higher PSA values. Further elucidation of piperaquine resistance mechanisms and continuous surveillance are warranted.

18.
Infection ; 51(1): 213-222, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35976559

RESUMO

BACKGROUND: Primaquine is essential for the radical cure of Plasmodium vivax malaria, but it poses a potential danger of severe hemolysis in G6PD-deficient (G6PDd) patients. This study aimed to determine whether primaquine is safe in a population with high G6PD prevalence but lacking G6PD diagnosis capacity. METHODS: In Myanmar, 152 vivax patients were gender- and age-matched at 1:3 for G6PDd versus G6PD-normal (G6PDn). Their risk of acute hemolysis was followed for 28 days after treatment with the standard chloroquine and 14-day primaquine (0.25 mg/kg/day) regimen. RESULTS: Patients anemic and non-anemic at enrollment showed a rising and declining trend in the mean hemoglobin level, respectively. In males, the G6PDd group showed substantially larger magnitudes of hemoglobin reduction and lower hemoglobin nadir levels than the G6PDn group, but this trend was not evident in females. Almost 1/3 of the patients experienced clinically concerning declines in hemoglobin, with five requiring blood transfusion. CONCLUSIONS: The standard 14-day primaquine regimen carries a significant risk of acute hemolytic anemia (AHA) in vivax patients without G6PD testing in a population with a high prevalence of G6PD deficiency and anemia. G6PD testing would avoid most of the clinically significant Hb reductions and AHA in male patients.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Feminino , Humanos , Masculino , Primaquina/efeitos adversos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Hemólise , Antimaláricos/efeitos adversos , Prevalência , Glucosefosfato Desidrogenase/uso terapêutico , Hemoglobinas , Plasmodium vivax
19.
Am Nat ; 200(5): 662-674, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260844

RESUMO

AbstractDuring range expansions, organisms can use epigenetic mechanisms to adjust to conditions in novel areas by altering gene expression and enabling phenotypic plasticity. Here, we predicted that the number of CpG sites within the genome, one form of epigenetic potential, would be important for successful range expansions because DNA methylation can modulate gene expression and, consequently, plasticity. We asked how the number of CpG sites and DNA methylation varied across five locations in the ∼70-year-old Kenyan house sparrow (Passer domesticus) range expansion. We found that the number of CpG sites was highest toward the vanguard of the invasion and decreased toward the range core. Analysis suggests that this pattern may have been driven by selection, favoring birds with more CpG sites at the range edge. However, we cannot rule out other processes, including nonrandom gene flow. Additionally, DNA methylation did not change across the range expansion, nor was it more variable. We hypothesize that as new areas are colonized, epigenetic potential may be selectively advantageous early but eventually be replaced by less plastic and perhaps genetically canalized traits as populations adapt to local conditions. Although further work is needed on epigenetic potential, this form (CpG number) appears to be a promising mechanism to investigate as a driver of expansions via capacitated phenotypic plasticity in other natural and anthropogenic range expansions.


Assuntos
Pardais , Animais , Pardais/genética , Metilação de DNA , Quênia , Epigênese Genética , Plásticos
20.
mBio ; 13(4): e0189722, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35938722

RESUMO

Artemisinin resistance in Plasmodium falciparum has been associated with a mutation in the NLI-interacting factor-like phosphatase PfNIF4, in addition to the mutations in the Kelch13 protein as the major determinant. We found that PfNIF4 was predominantly expressed at the schizont stage and localized in the nuclei of the parasite. To elucidate the functions of PfNIF4 in P. falciparum, we performed PfNIF4 knockdown (KD) using the inducible ribozyme system. PfNIF4 KD attenuated merozoite invasion and affected gametocytogenesis. PfNIF4 KD parasites also showed significantly increased in vitro susceptibility to artemisinins. Transcriptomic and proteomic analysis revealed that PfNIF4 KD led to the downregulation of gene categories involved in invasion and artemisinin resistance (e.g., mitochondrial function, membrane, and Kelch13 interactome) at the trophozoite and/or schizont stage. Consistent with PfNIF4 being a protein phosphatase, PfNIF4 KD resulted in an overall upregulation of the phosphoproteome of infected erythrocytes. Quantitative phosphoproteomic profiling identified a set of PfNIF4-regulated phosphoproteins with functional similarity to FCP1 substrates, particularly proteins involved in chromatin organization and transcriptional regulation. Specifically, we observed increased phosphorylation of Ser2/5 of the tandem repeats in the C-terminal domain (CTD) of RNA polymerase II (RNAPII) upon PfNIF4 KD. Furthermore, using the TurboID-based proteomic approach, we identified that PfNIF4 interacted with the RNAPII components, AP2-domain transcription factors, and chromatin-modifiers and binders. These findings suggest that PfNIF4 may act as the RNAPII CTD phosphatase, regulating the expression of general and parasite-specific cellular pathways during the blood-stage development. IMPORTANCE Protein phosphorylation regulates a multitude of cellular processes. The eukaryotic FCP1 phosphatase acts as a CTD-phosphatase to critically balance the phosphorylation status of the CTD of the RNAPII, controlling the accurate execution of the transcription process. Here, we identified PfNIF4 as the FCP1-like phosphatase in P. falciparum. PfNIF4 KD specifically downregulated genes involved in merozoite invasion, resulting in the attenuation of this process. Consistent with the earlier finding of the association of PfNIF4 mutations with artemisinin resistance in Southeast Asian parasite populations, PfNIF4 KD significantly increased in vitro susceptibility to artemisinins. The regulation of these cellular processes in P. falciparum by PfNIF4 is likely realized through RNAPII-mediated transcription, because PfNIF4 was found to interact with RNAPII subunits and KD of PfNIF4 caused CTD hyperphosphorylation. Our results reveal the functions of the PfNIF4 phosphatase in controlling the transcription of invasion- and resistance-related genes in the malaria parasite.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Animais , Antimaláricos/farmacologia , Artemisininas/metabolismo , Artemisininas/farmacologia , Malária Falciparum/parasitologia , Merozoítos , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Plasmodium falciparum/metabolismo , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Polimerase II/metabolismo , Esquizontes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...