Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 291: 110026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364467

RESUMO

This study demonstrates for the first time that the matrix (M) protein of BEFV is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm in a transcription-, carrier-, and energy-dependent manner. Experiments performed in both intact cells and digitonin-permeabilized cells revealed that M protein targets the nucleolus and requires carrier, cytosolic factors or energy input. By employing sequence and mutagenesis analyses, we have determined both nuclear localization signal (NLS) 6KKGKSK11 and nuclear export signal (NES) 98LIITSYL TI106 of M protein that are important for the nucleocytoplasmic shuttling of M protein. Furthermore, we found that both lamin A/C and chromosome maintenance region 1 (CRM-1) proteins could be coimmunoprecipitated and colocalized with the BEFV M protein. Knockdown of lamin A/C by shRNA and inhibition of CRM-1 by leptomycin B significantly reduced virus yield. Collectively, this study provides novel insights into nucleocytoplasmic shuttling of the BEFV M protein modulated by lamin A/C and CRM-1 and by a transcription- and carrier- and energy-dependent pathway.


Assuntos
Transporte Ativo do Núcleo Celular , Vírus da Febre Efêmera Bovina , Lamina Tipo A , Sinais de Localização Nuclear , Animais , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Citoplasma/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vírus da Febre Efêmera Bovina/metabolismo , Proteínas Estruturais Virais/metabolismo
2.
Vaccines (Basel) ; 11(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38005998

RESUMO

To simultaneously express and improve expression levels of multiple viral proteins of a porcine reproductive and respiratory syndrome virus (PRRSV), polycistronic baculovirus surface display vectors were constructed and characterized. We engineered polycistronic baculovirus surface display vectors, namely, pBacDual Display EGFP(BacDD)-2GP2-2GP4 and pBacDD-4GP5N34A/N51A (mtGP5), which simultaneously express and display the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP4-gp64TM-CTD, and His-tagged mtGP5-gp64TM-CTD fusion proteins of PRRSV on cell membrane of Sf-9 cells. Specific pathogen-free (SPF) pigs were administered intramuscularly in 2 doses at 21 and 35 days of age with genetic recombinant baculoviruses-infected cells. Our results revealed a high level of ELISA-specific antibodies, neutralizing antibodies, IL-4, and IFN-γ in SPF pigs immunized with the developed PRRSV subunit vaccine. To further assess the co-expression efficiency of different gene combinations, pBacDD-GP2-GP3-2GP4 and pBacDD-2mtGP5-2M constructs were designed for the co-expression of the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP3-gp64TM-CTD, and His-tagged GP4-gp64TM-CTD proteins as well as the ectodomain of His-tagged mtGP5-gp64TM-CTD and His-tagged M-gp64TM-CTD fusion proteins of PRRSV. To develop an ELISA assay for detecting antibodies against PRRSV proteins, the sequences encoding the ectodomain of the GP2, GP3, GP4, mtGP5, and M of PRRSV were amplified and subcloned into the pET32a vector and expressed in E. coli. In this work, the optimum conditions for expressing PRRSV proteins were evaluated, and the results suggested that 4 × 105 of Sf-9 cells supplemented with 7% fetal bovine serum and infected with the recombinant baculoviruses at an MOI of 20 for three days showed a higher expression levels of the protein. Taken together, the polycistronic baculovirus surface display system is a useful tool to increase expression levels of viral proteins and to simultaneously express multiple viral proteins of PRRSV for the preparation of subunit vaccines.

3.
Virus Res ; 330: 199109, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004901

RESUMO

Beak and feather disease virus (BFDV) is a 17-20 nm icosahedral virus belonging to the Circoviridae family. Psittacine beak and feather disease (PBFD) is caused by BFDV and its common symptoms include abnormal feather, beak, and claw development, as well as immunosuppression in various bird species. In this study, novel cell-penetrating peptides (CPPs) in the capsid protein (Cap) of BFDV were identified through bioinformatic analyses, after which they were experimentally characterized. The cell-penetrating activities of both CPP1 and CPP2 of BFDV were analyzed through flow cytometry and image analysis. The internalization of CPP1 and CPP2 was both dose- and time-dependent but their uptake efficiencies varied depending on the cell type. The cell-penetrating activities of BFDV CPP1 and CPP2 were both superior to that of a typical CPP-TAT originating from the viral protein of human immunodeficiency virus. The cellular uptake of 5 µM CPP1 was close to that of 25 µM TAT, albeit with less cytotoxicity. Using the identified CPPs, the pc-mCheery, pc-Rep, and pc-Cap plasmids were successfully delivered into the target cells for expression. Moreover, both the replication-associated protein with the tag and the Cap protein with the tag could also be successfully delivered into the cells by CPP1 and CPP2. Multiple endocytosis pathways and direct translocation were involved in the cell internalization of CPP1 and CPP2. Furthermore, the delivery of the apoptin gene using CPP1 and CPP2 effectively triggered apoptosis, thus confirming the potential of these CPPs as delivery vehicles. Similarly, green fluorescent protein (GFP) fused with CPP1 or CPP2 at their N-terminus successfully entered the cells. However, the cell internalization efficiency of CPP2-GFP was higher than that of CPP1-GFP. Taken together, our findings demonstrated that both CPP1 and CPP2 of BFDV have promising potential as novel CPPs.


Assuntos
Doenças das Aves , Peptídeos Penetradores de Células , Infecções por Circoviridae , Circovirus , Animais , Humanos , Proteínas do Capsídeo/genética , Circovirus/genética , Peptídeos Penetradores de Células/genética , Infecções por Circoviridae/veterinária , Aves
4.
Gene ; 867: 147371, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36933814

RESUMO

Beak and feather disease virus (BFDV) belongs to the Circoviridae family, which has a relatively simple replication mechanism. As BFDV lacks a mature cell culture system, a novel mini-replicon system based on the reporter plasmid that contains the origin of replication, which can bind to the Rep protein expressed from another plasmid and thus trigger its replication and induce/increase luminescence was developed. The dual-luciferase assay was used in this system to measure replicative efficiency by comparing relative light units (RLU) of firefly luciferase. Linear relationships between the luciferase activity of the reporter plasmids with the BFDV origin of replication and the amounts of the Rep protein and vice versa were found, suggesting the mini-replicon system can be used to quantify viral replication. Moreover, the activities of reporter plasmids driven by mutated Rep proteins or the activities of reporter plasmids with mutations were significantly downregulated. The Rep and Cap promoter activities can be characterized using this luciferase reporter system. Notably, the RLU of the reporter plasmid was considerably inhibited in the presence of sodium orthovanadate (Na3VO4). When BFDV-infected birds were treated with Na3VO4, the viral loads of BFDV rapidly decreased. In conclusion, this mini-replicon reporter gene-based system provides a practical means to screen for anti-viral drug candidates.


Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Animais , Circovirus/genética , Infecções por Circoviridae/genética , Infecções por Circoviridae/veterinária , Replicação Viral , Aves
5.
Viruses ; 14(9)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146885

RESUMO

Polyomaviruses are nonenveloped icosahedral viruses with a double-stranded circular DNA containing approximately 5000 bp and 5-6 open reading frames. In contrast to mammalian polyomaviruses (MPVs), avian polyomaviruses (APVs) exhibit high lethality and multipathogenicity, causing severe infections in birds without oncogenicity. APVs are classified into 10 major species: Adélie penguin polyomavirus, budgerigar fledgling disease virus, butcherbird polyomavirus, canary polyomavirus, cormorant polyomavirus, crow polyomavirus, Erythrura gouldiae polyomavirus, finch polyomavirus, goose hemorrhagic polyomavirus, and Hungarian finch polyomavirus under the genus Gammapolyomavirus. This paper briefly reviews the genomic structure and pathogenicity of the 10 species of APV and some of their differences in terms of virulence from MPVs. Each gene's genomic size, number of amino acid residues encoding each gene, and key biologic functions are discussed. The rationale for APV classification from the Polyomavirdae family and phylogenetic analyses among the 10 APVs are also discussed. The clinical symptoms in birds caused by APV infection are summarized. Finally, the strategies for developing an effective vaccine containing essential epitopes for preventing virus infection in birds are discussed. We hope that more effective and safe vaccines with diverse protection will be developed in the future to solve or alleviate the problems of viral infection.


Assuntos
Produtos Biológicos , Passeriformes , Infecções por Polyomavirus , Polyomavirus , Aminoácidos/genética , Animais , DNA Circular , Epitopos , Mamíferos , Passeriformes/genética , Filogenia , Polyomavirus/genética , Infecções por Polyomavirus/prevenção & controle , Infecções por Polyomavirus/veterinária , Desenvolvimento de Vacinas , Virulência
6.
Vet Microbiol ; 273: 109545, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998542

RESUMO

We have demonstrated previously that the σA protein of avian reovirus (ARV) functions as an activator of cellular energy, which upregulates glycolysis and the TCA cycle for virus replication. To date, there is no report with respect to σA-modulated regulation of cellular fatty acid metabolism. This study reveals that the σA protein of ARV inhibits fatty acids synthesis and enhance fatty acid oxidation by upregulating PSMB6, which suppresses Akt, sterol regulatory element-binding protein 1 (SREBP1), acetyl-coA carboxylase α (ACC1), and acetyl-coA carboxylase ß (ACC2). SREBP1 is a transcription factor involved in fatty acid and cholesterol biosynthesis. Overexpression of SREBP1 reversed σA-modulated suppression of ACC1 and ACC2. In this work, a fluorescence resonance energy transfer-based genetically encoded indicator, Ateams, was used to study σA-modulated inhibition of fatty acids synthesis which enhances cellular ATP levels in Vero cells and human cancer cell lines (A549 and HeLa). By using Ateams, we demonstrated that σA-modulated inhibition of Akt, SREBP1, ACC1, and ACC2 leads to increased levels of ATP in mammalian and human cancer cells. Furthermore, knockdown of PSMB6 or overexpression of SREBP1 reversed σA-modulated increased levels of ATP in cells, indicating that PSMB6 and SREBP1 play important roles in ARV σA-modulated cellular fatty acid metabolism. Furthermore, we found that σA R155/273A mutant protein loses its ability to enter the nucleolus, which impairs its ability to regulate fatty acid metabolism and does not increase ATP formation, suggesting that nucleolus entry of σA is critical for regulating cellular fatty acid metabolism to generate more energy for virus replication. Collectively, this study provides novel insights into σA-modulated inhibition of fatty acid synthesis and enhancement of fatty acid oxidation to produce more energy for virus replication through the PSMB6/Akt/SREBP1/ACC pathway.


Assuntos
Orthoreovirus Aviário , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina , Animais , Chlorocebus aethiops , Ácidos Graxos/metabolismo , Humanos , Mamíferos , Orthoreovirus Aviário/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1 , Células Vero , Replicação Viral
7.
Vet Microbiol ; 264: 109277, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826648

RESUMO

Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.


Assuntos
Chaperonina com TCP-1 , Orthoreovirus Aviário , Proteínas Virais , Replicação Viral , Animais , Proteínas do Capsídeo/metabolismo , Chaperonina com TCP-1/metabolismo , Orthoreovirus Aviário/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral/genética
8.
Virus Res ; 308: 198634, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34793873

RESUMO

Avian polyomavirus (APV) is a non-enveloped virus with a circular double-stranded DNA genome approximately 5000 bp in length. APV was first reported in fledgling budgerigars (Melopsittacus undulatus) as the causative agent of budgerigar fledgling disease, resulting in high parrot mortality rates in the 1980s. This disease has been observed worldwide, and APV has a wide host range including budgerigars, cockatoos, lorikeets, lovebirds, and macaws. Twenty APV isolates have been collected from healthy and symptomatic parrots in Taiwan from 2015 to 2019. These isolates were then amplified via polymerase chain reaction, after which the whole genomes of these isolates were sequenced. The overall APV-positive rate was 14.2%, and the full lengths of the APV Taiwan isolates varied from 4971 to 4982 bps. The APV genome contains an early region that encodes two regulatory proteins (the large tumor antigen (Large T-Ag) and the small tumor antigen (Small t-Ag)) and a late region which encodes the capsid proteins VP1, VP2, VP3, and VP4. The nucleotide identities of the VP1 and VP4 genes ranged from 98.7 to 100%, whereas the nucleotide sequence of the Large T-Ag gene had the highest identity (99.2-100%) relative to other APV isolates from the GenBank database. A phylogenetic tree based on the whole genome demonstrated that the APV Taiwan isolates were closely related to Japanese and Portuguese isolates. Recombination events were analyzed using the Recombination Detection Program version 4 and APV Taiwan isolate TW-3 was identified as a minor parent of the APV recombinants. In this study, we first reported the characterization of the whole genome sequences of APV Taiwan isolates and their phylogenetic relationships with all APV isolates available in the GenBank database.


Assuntos
Melopsittacus , Papagaios , Polyomavirus , Animais , Antígenos de Neoplasias , Filogenia , Polyomavirus/genética , Taiwan
9.
Virus Res ; 308: 198647, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838936

RESUMO

This study sought to clone and sequence the interferon-γ (IFN-γ) gene of the Fischer's lovebird parrot (Agapornis fischeri). Raw264.7 cells treated with the expressed IFN-γ protein exhibited an upregulation in inducible nitric oxide synthase protein expression and nitric oxide (NO) production coupled with increases in phagocytosis and pinocytosis, as well as an induction of interferon-stimulated genes through the activation of the NF-κB factor, all of which are indicators of the innate immune responses of the activated macrophages. Similar to the IFN-γ protein of other species, the NO production activity of the parrot IFN-γ protein decreased by 80% after exposure at 60 °C for 4 min. Additionally, only half of the NO production activity of the parrot IFN-γ protein remained upon exposure to HCl for 30 min. These findings suggested that the parrot IFN-γ protein was heat-labile and sensitive to acidic conditions. Therefore, all of these effects contributed to the blockage of the uptake of BFDV virus-like particles (VLPs) by cells, the nuclear entry of the Cap protein of BFDV VLPs, and the clearance of the virus from BFDV-infected parrots by the IFN-γ protein of Agapornis fischeri. This study is the first to describe the cloning of the IFN-γ gene of Agapornis fischeri and characterize the anti-beak and feather disease virus activity of the IFN-γ protein of Agapornis fischeri.


Assuntos
Agapornis , Doenças das Aves , Circovirus , Papagaios , Animais , Circovirus/genética , Interferon gama/genética
10.
Vet Res ; 51(1): 112, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907618

RESUMO

To increase expression levels of the PCV2 Cap(d41) protein, novel baculovirus surface display vectors with multiple expression cassettes were constructed to create recombinant baculoviruses BacSC-Cap(d41), BacDD-2Cap(d41), BacDD-3Cap(d41), and BacDD-4Cap(d41). Our results reveal that the recombinant baculovirus BacDD-4Cap(d41) was able to express the highest levels of Cap(d41) protein. Optimum conditions for expressing the PCV2 Cap(d41) protein were determined, and our results show that 107 of Sf-9 infected with the recombinant baculovirus BacDD-4Cap(d41) at an MOI of 5 for 3 days showed the highest level of protein expression. Mice immunized with the 4Cap(d41) vaccine which was prepared from the recombinant baculovirus-infected cells (107) elicited higher ELISA titers compared to the Cap (d41) vaccine. The 4Cap(d41) vaccine could elicit anti-PCV2 neutralizing antibodies and IFN-γ in mice, as confirmed by virus neutralization test and IFN-γ ELISA. Moreover, the swine lymphocyte proliferative responses indicated that the 4Cap(d41) vaccine was able to induce a clear cellular immune response. Flow cytometry analysis showed that the percentage of CD4+ T cells and CD4+/CD8+ ratio was increased significantly in SPF pigs immunized with the 4Cap(d41) vaccine. Importantly, the 4Cap(d41) vaccine induced an IFN-γ response, further confirming that its effect is through cellular immunity in SPF pigs. An in vivo challenge study revealed that the 4Cap(d41) and the commercial vaccine groups significantly reduce the viral load of vaccinated pigs as compared with the CE negative control group. Taken together, we have successfully developed a 4Cap(d41) vaccine that may be a potential subunit vaccine for preventing the disease associated with PCV2 infections.


Assuntos
Baculoviridae , Infecções por Circoviridae/veterinária , Circovirus/imunologia , Imunogenicidade da Vacina , Doenças dos Suínos/imunologia , Proteínas Virais/imunologia , Animais , Infecções por Circoviridae/imunologia , Vetores Genéticos/administração & dosagem , Camundongos , Organismos Livres de Patógenos Específicos , Sus scrofa , Suínos , Proteínas Virais/administração & dosagem
11.
Virus Res ; 289: 198144, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32889107

RESUMO

Beak and feather disease virus (BFDV) is a single-stranded circular DNA icosahedral virus that belongs to the Circoviridae family. This virus is the causative pathogen of beak and feather disease, which leads to feather loss, malformed claws, and immunosuppression of psittacine birds. Our study produced BFDV virus-like particles (VLPs) including capsid proteins, mutant Cap proteins (Cap ΔNLS54, Cap ΔNLS62, Cap C228S, and Cap ΔNES) and chimeric Cap proteins carrying the epitope (amino acid residues 64-70) of the replication-associated protein (R-Cap, Cap-R, R-Cap ΔNLS54, and Cap ΔNLS54-R). All of the aforementioned VLPs were observed via transmission electron microscopy and verified through immunogold labeling. The nuclear localization sequence (NLS) of the Cap protein was identified between amino acid residues 55-62. Nuclear export of the Cap protein depended on the nuclear export sequence (NES). All VLPs except Cap ΔNLS62 and Cap ΔNES entered the cells 2 h post-infection (hpi) and were shuttled into the nucleus at 8 hpi. Wheat germ agglutinin (WGA) blocked the nuclear entry of Cap proteins at 8 hpi and the nuclear export of Cap proteins at 16 hpi was inhibited by leptomycin B. The nuclear entry of Cap protein was inhibited by importin α and importin ß inhibitors, as well as NLS peptides. Moreover, the interactions of Cap proteins and Cap VLPs with both importin α and importin ß were characterized via the GST pull-down and immunofluorescence assays. These interactions were blocked by the presence of importin α and importin ß inhibitors, as well as NLS peptides. Therefore, our study is the first to describe the precise position of the NLS of the BFDV Cap protein and the interaction of Cap protein with importin α and importin ß in vitro.


Assuntos
Doenças das Aves/virologia , Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Infecções por Circoviridae/virologia , Circovirus/metabolismo , Animais , Linhagem Celular , Embrião de Galinha , Carioferinas/metabolismo , Montagem de Vírus
12.
Arch Virol ; 164(8): 2091-2106, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31139938

RESUMO

Beak and feather disease virus (BFDV) belongs to the family Circoviridae. A rolling-circle replication strategy based on a replication-associated protein (Rep) has been proposed for BFDV. The Rep gene of BFDV was expressed and purified, and it was shown to cleave short oligonucleotides containing the conserved nonanucleotide sequence found in the replication origin of circoviruses. This endonuclease activity was most efficient in the presence of the divalent metal ions Mg2+ and Mn2+. Rep proteins containing mutation in the ATPase/GTPase motifs and the 14FTLNN18, 61KKRLS65, 89YCSK92, and 170GKS172 motifs lacked endonuclease activity. The endonuclease activity was not affected by ATPase inhibitors, with the exception of N-ethylmaleimide (NEM), or by GTPase inhibitors, but it was decreased by treatment with the endonuclease inhibitor L-742001. Both the ATPase and GTPase activities were decreased by site-directed mutagenesis and deletion of the ATPase/GTPase and endonuclease motifs. The Rep protein was able to bind a double-stranded DNA fragment of P36 (dsP36) containing the stem-loop structure of the replication origin of BFDV. All of the Rep mutant proteins showed reduced ability to bind this fragment, suggesting that all the ATPase/GTPase and endonuclease motifs are involved in the binding. Other than NEM, all ATPase, GTPase, and endonuclease inhibitors inhibited the binding of the Rep protein to the dsP36 fragment. This is the first report describing the endonuclease activity of the Rep protein of BFDV.


Assuntos
Circovirus/genética , Replicação do DNA/genética , Endonucleases/genética , Replicação Viral/genética , Adenosina Trifosfatases/genética , Infecções por Circoviridae/virologia , DNA Helicases/genética , DNA Viral/genética , GTP Fosfo-Hidrolases/genética , Origem de Replicação/genética , Transativadores/genética
13.
Arch Virol ; 163(1): 145-151, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29052056

RESUMO

Psittacine beak and feather disease (PBFD) is characterised by degenerative feather, feather dystrophy, and beak deformity. Sometimes acute forms can lead to fatal cases in nestlings. The worldwide distribution of this disease affects numerous species of parrots with an average prevalence of 40%, including in Taiwan. The pathogen of PBFD is beak and feather disease virus (BFDV), which is a single-stranded circular DNA virus, circovirus. To date, hemagglutination and PCR assays have been routinely used to detect this virus. In this study, both the replication-associated protein (Rep) and the structural capsid protein (Cap) were expressed and then used as antigens for the production of monoclonal antibodies. Conserved epitopes recognised by the anti-Cap and anti-Rep monoclonal antibodies were determined to be NFEDYRI and LSALKKM, respectively. Clinical samples collected from different species of parrots were tested by hemagglutination, PCR, and anti-Cap antigen-capture ELISA assays and the positive rates were the same at 49%. Thus, this anti-Cap antigen-capture ELISA is able to be used for the rapid identification of BFDV-infected birds in a non-invasive manner.


Assuntos
Antígenos Virais/metabolismo , Circovirus/imunologia , DNA Viral/genética , Animais , Anticorpos Monoclonais , Antígenos Virais/genética , Doenças das Aves/diagnóstico , Doenças das Aves/virologia , Circovirus/genética , Ensaio de Imunoadsorção Enzimática/métodos , Mapeamento de Epitopos , Fezes/virologia , Regulação Viral da Expressão Gênica/fisiologia , Papagaios , Proteínas Virais/imunologia
14.
J Vet Med Sci ; 79(2): 273-276, 2017 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-27916786

RESUMO

In this study, a large-scale serological survey of caprine arthritis encephalitis virus (CAEV) infection was conducted between March 2011 and October 2012. 3,437 goat blood or milk samples were collected from 65 goat farms throughout Taiwan. A commercial ELISA kit was used to detect antibodies against CAEV. The overall seropositive rate was 61.7% (2,120/3,437) in goats and in 98.5% (64/65) of goat farms. These results provide the first large-scale serological evidence for the presence of CAEV infection, indicating that the disease is widespread in Taiwan.


Assuntos
Vírus da Artrite-Encefalite Caprina/fisiologia , Doenças das Cabras/epidemiologia , Infecções por Lentivirus/veterinária , Animais , Anticorpos Antivirais/sangue , Doenças das Cabras/virologia , Cabras , Infecções por Lentivirus/epidemiologia , Infecções por Lentivirus/virologia , Leite/virologia , Prevalência , Estudos Soroepidemiológicos , Taiwan/epidemiologia
16.
Arch Virol ; 161(11): 2969-88, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27388370

RESUMO

Beak and feather disease virus (BFDV) is an avian circovirus, and it has a single-stranded DNA genome. It causes a fatal disease in parrots called psittacine beak and feather disease (PBFD). After screening of samples collected from Taiwan using PCR, complete genome sequences of isolates from 21 samples from various species of parrot were obtained. The nucleotide sequences of the replication-associated protein gene (rep) and the amino acid sequences of the replication-associated protein (Rep) were more conserved than the nucleotide sequences of the capsid protein gene (cp) and the amino acid sequences of the capsid protein (CP). In Bayesian phylogenetic analysis, the topology of the complete genome sequence was similar to that of the rep gene alone. Recombination events were identified in Taiwan isolates. Recombination hot spots were mainly located in the intergenic region between the 3' ends of the rep and cp genes and at the 5' end of the cp gene. The 5' end and the middle of the rep gene were found to be recombination cold spots. Despite the overall negative selection that was observed for the rep and cp genes, one and 18 positive selected sites were found for the rep and cp gene, respectively.


Assuntos
Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/classificação , Circovirus/genética , Filogenia , Recombinação Genética , Animais , Proteínas do Capsídeo/genética , Infecções por Circoviridae/virologia , Circovirus/isolamento & purificação , DNA Helicases/genética , DNA Viral/química , DNA Viral/genética , Genoma Viral , Papagaios , Análise de Sequência de DNA , Taiwan , Transativadores/genética
17.
Virus Genes ; 52(5): 625-32, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27146321

RESUMO

Viral-encoded ATPase can act as a part of molecular motor in genome packaging of DNA viruses, such as vaccinia virus and adenovirus, by ATP hydrolysis and interaction with DNA. Poxviral ATPase (also called A32) is involved in genomic double-stranded DNA (dsDNA) encapsidation, and inhibition of the expression of A32 causes formation of immature virions lacking viral DNA. However, the role of A32 in goatpoxvirus genome packaging and its dsDNA binding property are not known. In this study, purified recombinant goatpoxvirus A32 protein (rA32) was examined for its dsDNA binding property as well as the effect of dsDNA on ATP hydrolysis. We found that rA32 could bind dsDNA, and its ATPase activity was significant increased with dsDNA binding. Effects of magnesium and calcium ions on ATP hydrolysis were investigated also. The ATPase activity was dramatically enhanced by dsDNA in the presence of Mg(2+); in contrast, ATPase function was not altered by Ca(2+). Furthermore, the enzyme activity of rA32 was completely blocked by Zn(2+). Regarding DNA-protein interaction, the rA32-ATP-Mg(2+) showed lower dsDNA binding affinity than that of rA32-ATP-Ca(2+). The DNA-protein binding was stronger in the presence of zinc ion. Our results implied that A32 may play a role in viral genome encapsidation and DNA condensation.


Assuntos
Adenosina Trifosfatases/metabolismo , Capripoxvirus/metabolismo , Vírus de DNA/genética , DNA Viral/metabolismo , DNA/genética , Proteínas Virais/metabolismo , Zinco/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Capripoxvirus/genética , Empacotamento do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Viral/genética , Vaccinia virus/genética , Vaccinia virus/metabolismo , Montagem de Vírus/genética
18.
Virus Res ; 213: 149-161, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26657880

RESUMO

BACKGROUND: Psittacine beak and feather disease affects parrots resulting in an immunosuppressive disease that is often characterized by an abnormal shape and growth of the animal's beak, feathers, and claws. Beak and feather disease virus (BFDV) is a single-stranded circular DNA virus and is classified as a member of the Circoviridae family. Two major open reading frames (ORFs) are known to encode the replication-associated (Rep) protein and the capsid-associated (Cap) protein. METHODS: The Rep and Cap genes of BFDV were fused with tags and then expressed and purified, respectively. Both the ATPase and GTPase activities of the recombinant Rep protein are measured. The substrate and ion preference, the optimal conditions, the effects of ATPase and GTPase inhibitors and the presence of Cap protein on the ATPase and GTPase activity of the Rep protein are examined. Finally, the effects of the Walker A motif, the Walker B motif, and a novel GYDG motif of the Rep protein on the ATPase and GTPase activities are studied by various mutants. RESULTS: The recombinant Rep protein could display ATPase activity and GTPase activity. The Rep protein was able to hydrolyze both deoxyribonucleotides and ribonucleotides. Among nucleoside triphosphates and deoxynucleoside triphosphates, the substrate preference orders were found to be ATP>GTP>CTP≥UTP and dATP>dGTP>dTTP>dCTP, respectively. Both the ATPase and GTPase activity of the BFDV Rep protein required magnesium ions and the presence of calcium ions significantly inhibited the ATPase and GTPase activity of the Rep protein. The optimal temperatures for ATPase activity and GTPase activity were both 56 °C, while their optimal pH values were both pH 7.5. Both the ATPase activity and GTPase activity of the BFDV Rep protein were significantly down-regulated by polynucleotides and the dsDNA of 36 bp (located in origin of replication) of BFDV genome. The ATPase activity of the BFDV Rep protein was found to be more sensitive to sodium azide than sodium orthovanadate and N-ethylmaleimide. Linoleic acid more strongly inhibited the GTPase activity of the Rep protein than dynasore. This suggested the Rep protein of BFDV should be classified as an F-type ATPase and polyunsaturated fatty acid-sensitive GTPase. In the presence of 10 ng of the Cap protein, the ATPase activity and GTPase activity of the BFDV Rep protein were significantly increased. Furthermore, the BFDV Rep protein contains the Walker A motif, the Walker B motif and a novel GYDG motif. Both the ATPase activity and the GTPase activity of various deletion and site-directed mutants of the Rep protein affecting these motifs were significantly reduced, suggesting all the three motifs contribute to the ATPase and GTPase activities; specifically. In addition, the ATPase activity and GTPase activity of the deletion mutants of the Rep protein were reversed in the presence of the Cap protein. This is the first example of dual ATPase and GTPase activity being reported in the Rep protein of BFDV.


Assuntos
Adenosina Trifosfatases/metabolismo , Circovirus/enzimologia , DNA Helicases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Transativadores/metabolismo , Motivos de Aminoácidos , Circovirus/genética , DNA Helicases/química , DNA Helicases/genética , Análise Mutacional de DNA , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Temperatura , Transativadores/química , Transativadores/genética
19.
J Vet Med Sci ; 77(9): 1055-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25855509

RESUMO

Orf virus (ORFV), a member of parapoxvirus, is an enveloped virus with genome of double-stranded DNA. ORFV causes contagious pustular dermatitis or contagious ecthyma in sheep and goats worldwide. In general, detection of viral DNA and observing ORFV virion in tissues of afflicted animals are two methods commonly used for diagnosis of orf infection; however, isolation of the ORFV in cell culture using virus-containing tissue as inoculum is known to be difficult. In this work, the ORFV (Hoping strain) isolated in central Taiwan was successfully grown in cell culture. We further examined the biochemical characteristic of our isolate, including viral genotyping, viral mRNA and protein expression. By electron microscopy, one unique form of viral particle from ORFV infected cellular lysate was demonstrated in the negative-stained field. Moreover, immunomodulating and anti-influenza virus properties of this ORFV were investigated. ORFV stimulated human monocytes (THP-1) secreting proinflammatory cytokines IL-8 and TNF-α. And, pre-treatment of ORFV-infected cell medium prevents A549 cells from subsequent type A influenza virus (IAV) infection. Similarly, mice infected with ORFV via both intramuscular and subcutaneous routes at two days prior to IAV infection significantly decreased the replication of IAV. In summary, the results of a current study indicated our Hoping strain harbors the immune modulator property; with such a bio-adjuvanticity, we further proved that pre-exposure of ORFV protects animals from subsequent IAV infection.


Assuntos
Ectima Contagioso/virologia , Vírus do Orf/fisiologia , Infecções por Orthomyxoviridae/virologia , Animais , Células Cultivadas , Coinfecção/imunologia , Coinfecção/virologia , DNA Viral , Ectima Contagioso/complicações , Ectima Contagioso/fisiopatologia , Feminino , Doenças das Cabras/virologia , Cabras/virologia , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/complicações , Influenza Humana/fisiopatologia , Influenza Humana/virologia , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/metabolismo , Monócitos/virologia , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/fisiopatologia , Reação em Cadeia da Polimerase/veterinária , Taiwan , Fator de Necrose Tumoral alfa/metabolismo
20.
J Vet Diagn Invest ; 26(6): 721-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25223342

RESUMO

Infectious bronchitis virus (IBV; Avian coronavirus) causes acute respiratory and reproductive and urogenital diseases in chickens. Following sequence alignment of IBV strains, a combination of selective primer sets was designed to individually amplify the IBV wild-type and vaccine strains using a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) approach. This system was shown to discriminate the IBV wild-type and vaccine strains. Moreover, an ARMS real-time RT-PCR (ARMS qRT-PCR) was combined with a high-resolution analysis (HRMA) to establish a melt curve analysis program. The specificity of the ARMS RT-PCR and the ARMS qRT-PCR was verified using unrelated avian viruses. Different melting temperatures and distinct normalized and shifted melting curve patterns for the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were detected. The new assays were used on samples of lung and trachea as well as virus from allantoic fluid and cell culture. In addition to being able to detect the presence of IBV vaccine and wild-type strains by ARMS RT-PCR, the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were distinguished using ARMS qRT-PCR by their melting temperatures and by HRMA. These approaches have acceptable sensitivities and specificities and therefore should be able to serve as options when carrying out differential diagnosis of IBV in Taiwan and China.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Reação em Cadeia da Polimerase Multiplex/veterinária , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Animais , Embrião de Galinha , Galinhas , China , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Genótipo , Vírus da Bronquite Infecciosa/isolamento & purificação , Doenças das Aves Domésticas/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Sensibilidade e Especificidade , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...