Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadk8426, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335289

RESUMO

Acute liver failure (ALF) is a critical medical condition defined as the rapid development of hepatic dysfunction. Conventional ultrasound elastography cannot continuously monitor liver stiffness over the course of rapidly changing diseases for early detection due to the requirement of a handheld probe. In this study, we introduce wearable bioadhesive ultrasound elastography (BAUS-E), which can generate acoustic radiation force impulse (ARFI) to induce shear waves for the continuous monitoring of modulus changes. BAUS-E contains 128 channels with a compact design with only 24 mm in the azimuth direction for comfortable wearability. We further used BAUS-E to continuously monitor the stiffness of in vivo rat livers with ALF induced by d-galactosamine over 48 hours, and the stiffness change was observed within the first 6 hours. BAUS-E holds promise for clinical applications, particularly in patients after organ transplantation or postoperative care in the intensive care unit (ICU).


Assuntos
Técnicas de Imagem por Elasticidade , Dispositivos Eletrônicos Vestíveis , Humanos , Ultrassonografia
2.
Nat Biotechnol ; 42(3): 448-457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37217752

RESUMO

Recent advances in wearable ultrasound technologies have demonstrated the potential for hands-free data acquisition, but technical barriers remain as these probes require wire connections, can lose track of moving targets and create data-interpretation challenges. Here we report a fully integrated autonomous wearable ultrasonic-system-on-patch (USoP). A miniaturized flexible control circuit is designed to interface with an ultrasound transducer array for signal pre-conditioning and wireless data communication. Machine learning is used to track moving tissue targets and assist the data interpretation. We demonstrate that the USoP allows continuous tracking of physiological signals from tissues as deep as 164 mm. On mobile subjects, the USoP can continuously monitor physiological signals, including central blood pressure, heart rate and cardiac output, for as long as 12 h. This result enables continuous autonomous surveillance of deep tissue signals toward the internet-of-medical-things.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Sinais Vitais
3.
Nat Biomed Eng ; 7(10): 1282-1292, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37814007

RESUMO

In the adult brain, neural stem cells are largely restricted into spatially discrete neurogenic niches, and hence areas of neuron loss during neurodegenerative disease or following a stroke or traumatic brain injury do not typically repopulate spontaneously. Moreover, understanding neural activity accompanying the neural repair process is hindered by a lack of minimally invasive devices for the chronic measurement of the electrophysiological dynamics in damaged brain tissue. Here we show that 32 individually addressable platinum microelectrodes integrated into laminin-coated branched polymer scaffolds stereotaxically injected to span a hydrogel-filled cortical lesion and deeper regions in the brains of mice promote neural regeneration while allowing for the tracking of migrating host brain cells into the lesion. Chronic measurements of single-unit activity and neural-circuit analyses revealed the establishment of spiking activity in new neurons in the lesion and their functional connections with neurons deeper in the brain. Electronic implants mimicking the topographical and surface properties of brain vasculature may aid the stimulation and tracking of neural-circuit restoration following injury.


Assuntos
Laminina , Doenças Neurodegenerativas , Camundongos , Animais , Laminina/metabolismo , Alicerces Teciduais , Encéfalo/fisiologia , Eletrônica
4.
Nano Lett ; 23(13): 6184-6192, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37338198

RESUMO

Spinal cord neuromodulation can restore partial to complete loss of motor functions associated with neuromotor disease and trauma. Current technologies have made substantial progress but have limitations as dorsal epidural or intraspinal devices that are either remote to ventral motor neurons or subject to surgical intervention in the spinal tissue. Here, we describe a flexible and stretchable spinal stimulator design with nanoscale thickness that can be implanted by minimally invasive injection through a polymeric catheter to target the ventral spinal space of mice. Ventrolaterally implanted devices exhibited substantially lower stimulation threshold currents and more precise recruitment of motor pools than did comparable dorsal epidural implants. Functionally relevant and novel hindlimb movements were achieved via specific stimulation patterns of the electrodes. This approach holds translational potential for improving controllable limb function following spinal cord injury or neuromotor disease.


Assuntos
Biomimética , Traumatismos da Medula Espinal , Camundongos , Animais , Traumatismos da Medula Espinal/terapia , Membro Posterior , Eletrodos
5.
Nat Biomed Eng ; 7(10): 1321-1334, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37127710

RESUMO

Serial assessment of the biomechanical properties of tissues can be used to aid the early detection and management of pathophysiological conditions, to track the evolution of lesions and to evaluate the progress of rehabilitation. However, current methods are invasive, can be used only for short-term measurements, or have insufficient penetration depth or spatial resolution. Here we describe a stretchable ultrasonic array for performing serial non-invasive elastographic measurements of tissues up to 4 cm beneath the skin at a spatial resolution of 0.5 mm. The array conforms to human skin and acoustically couples with it, allowing for accurate elastographic imaging, which we validated via magnetic resonance elastography. We used the device to map three-dimensional distributions of the Young's modulus of tissues ex vivo, to detect microstructural damage in the muscles of volunteers before the onset of soreness and to monitor the dynamic recovery process of muscle injuries during physiotherapies. The technology may facilitate the diagnosis and treatment of diseases affecting tissue biomechanics.

6.
Science ; 377(6605): 517-523, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35901155

RESUMO

Continuous imaging of internal organs over days could provide crucial information about health and diseases and enable insights into developmental biology. We report a bioadhesive ultrasound (BAUS) device that consists of a thin and rigid ultrasound probe robustly adhered to the skin via a couplant made of a soft, tough, antidehydrating, and bioadhesive hydrogel-elastomer hybrid. The BAUS device provides 48 hours of continuous imaging of diverse internal organs, including blood vessels, muscle, heart, gastrointestinal tract, diaphragm, and lung. The BAUS device could enable diagnostic and monitoring tools for various diseases.


Assuntos
Adesivos , Monitorização Fisiológica , Adesivo Transdérmico , Ultrassonografia , Dispositivos Eletrônicos Vestíveis , Elastômeros , Humanos , Hidrogéis , Monitorização Fisiológica/métodos , Ultrassonografia/métodos
7.
Nat Nanotechnol ; 17(3): 292-300, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949774

RESUMO

Electrical impulse generation and its conduction within cells or cellular networks are the cornerstone of electrophysiology. However, the advancement of the field is limited by sensing accuracy and the scalability of current recording technologies. Here we describe a scalable platform that enables accurate recording of transmembrane potentials in electrogenic cells. The platform employs a three-dimensional high-performance field-effect transistor array for minimally invasive cellular interfacing that produces faithful recordings, as validated by the gold standard patch clamp. Leveraging the high spatial and temporal resolutions of the field-effect transistors, we measured the intracellular signal conduction velocity of a cardiomyocyte to be 0.182 m s-1, which is about five times the intercellular velocity. We also demonstrate intracellular recordings in cardiac muscle tissue constructs and reveal the signal conduction paths. This platform could provide new capabilities in probing the electrical behaviours of single cells and cellular networks, which carries broad implications for understanding cellular physiology, pathology and cell-cell interactions.


Assuntos
Fenômenos Eletrofisiológicos , Miócitos Cardíacos , Potenciais de Ação , Comunicação Celular
8.
Nat Biomed Eng ; 5(7): 749-758, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34272524

RESUMO

Stretchable wearable devices for the continuous monitoring of physiological signals from deep tissues are constrained by the depth of signal penetration and by difficulties in resolving signals from specific tissues. Here, we report the development and testing of a prototype skin-conformal ultrasonic phased array for the monitoring of haemodynamic signals from tissues up to 14 cm beneath the skin. The device allows for active focusing and steering of ultrasound beams over a range of incident angles so as to target regions of interest. In healthy volunteers, we show that the phased array can be used to monitor Doppler spectra from cardiac tissues, record central blood flow waveforms and estimate cerebral blood supply in real time. Stretchable and conformal skin-worn ultrasonic phased arrays may open up opportunities for wearable diagnostics.


Assuntos
Hemodinâmica/fisiologia , Monitorização Fisiológica/métodos , Circulação Cerebrovascular/fisiologia , Coração/fisiologia , Humanos , Análise em Microsséries , Monitorização Fisiológica/instrumentação , Razão Sinal-Ruído , Ultrassonografia Doppler , Dispositivos Eletrônicos Vestíveis
9.
Am J Transl Res ; 13(5): 4760-4770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150056

RESUMO

OBJECTIVE: To investigate the regulatory mechanism of sevoflurane-induced neuronal apoptosis through analyzing the expression of glial cell-derived neurotrophic factor (GDNF) mediated by miR-133, sponged by long non-coding RNA (lncRNA) CDKN2B-AS1. METHODS: An in vitro cell injury model was established by using different concentrations of sevoflurane and primary hippocampal neurons. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8); caspase-3 and caspase-9 activities were detected by colorimetry, and apoptotic cells were determined by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Fluorescence in situ hybridization (FISH) analysis was used to detect localized expression of CDKN2B antisense RNA 1 (CDKN2B-AS1), and dual-luciferase reporter assay was employed to verify the correlation of CDKN2B-AS1 and miR-133, and of miR-133 and GDNF. The expression of CDKN2B-AS1, miR-133, and GDNF mRNA in the cell injury model were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western blot was utilized to detect the expression of GDNF protein in the cell injury model. RESULTS: In the cell injury model, CDKN2B-AS1 was highly expressed in the cytoplasm, and CDKN2B-AS1 and GDNF were downregulated and miR-133 was upregulated as detected by qRT-PCR (all P<0.05). The connections between CDKN2B-AS1 and miR-133, and between miR-133 and GDNF were confirmed. That is, CDKN2B-AS1 regulated the expression of GDNF by adsorbing miR-133 (all P<0.05). In cells treated with sevoflurane, overexpression of CDKN2B-AS1 could inhibit caspase-3 and caspase-9 activities and the degree of apoptosis. miR-133 could partially alleviate the effect of overexpressing CDKN2B-AS1 on cells, and si-GDNF the effect of miR-133 inhibitor (all P<0.05). CONCLUSION: lncRNA CDKN2B-AS1 can up-regulate the expression of GDNF, inhibit neuronal apoptosis, and ease the toxic effect of sevoflurane on neural cells by acting as a sponge to adsorb miR-133.

10.
Nature ; 583(7818): 790-795, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728239

RESUMO

Organic-inorganic hybrid perovskites have electronic and optoelectronic properties that make them appealing in many device applications1-4. Although many approaches focus on polycrystalline materials5-7, single-crystal hybrid perovskites show improved carrier transport and enhanced stability over their polycrystalline counterparts, due to their orientation-dependent transport behaviour8-10 and lower defect concentrations11,12. However, the fabrication of single-crystal hybrid perovskites, and controlling their morphology and composition, are challenging12. Here we report a solution-based lithography-assisted epitaxial-growth-and-transfer method for fabricating single-crystal hybrid perovskites on arbitrary substrates, with precise control of their thickness (from about 600 nanometres to about 100 micrometres), area (continuous thin films up to about 5.5 centimetres by 5.5 centimetres), and composition gradient in the thickness direction (for example, from methylammonium lead iodide, MAPbI3, to MAPb0.5Sn0.5I3). The transferred single-crystal hybrid perovskites are of comparable quality to those directly grown on epitaxial substrates, and are mechanically flexible depending on the thickness. Lead-tin gradient alloying allows the formation of a graded electronic bandgap, which increases the carrier mobility and impedes carrier recombination. Devices based on these single-crystal hybrid perovskites show not only high stability against various degradation factors but also good performance (for example, solar cells based on lead-tin-gradient structures with an average efficiency of 18.77 per cent).

11.
Nature ; 577(7789): 209-215, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915395

RESUMO

Strain engineering is a powerful tool with which to enhance semiconductor device performance1,2. Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties3-5. Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization6-8, electrostriction9, annealing10-12, van der Waals force13, thermal expansion mismatch14, and heat-induced substrate phase transition15, the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of α-formamidinium lead iodide (α-FAPbI3) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial α-FAPbI3 thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of α-FAPbI3. Strained epitaxy is also shown to have a substantial stabilization effect on the α-FAPbI3 phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an α-FAPbI3-based photodetector.

12.
Proc Natl Acad Sci U S A ; 116(13): 5872-5877, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850523

RESUMO

Nanoscale multipoint structure-function analysis is essential for deciphering the complexity of multiscale biological and physical systems. Atomic force microscopy (AFM) allows nanoscale structure-function imaging in various operating environments and can be integrated seamlessly with disparate probe-based sensing and manipulation technologies. Conventional AFMs only permit sequential single-point analysis; widespread adoption of array AFMs for simultaneous multipoint study is challenging owing to the intrinsic limitations of existing technological approaches. Here, we describe a prototype dispersive optics-based array AFM capable of simultaneously monitoring multiple probe-sample interactions. A single supercontinuum laser beam is utilized to spatially and spectrally map multiple cantilevers, to isolate and record beam deflection from individual cantilevers using distinct wavelength selection. This design provides a remarkably simplified yet effective solution to overcome the optical cross-talk while maintaining subnanometer sensitivity and compatibility with probe-based sensors. We demonstrate the versatility and robustness of our system on parallel multiparametric imaging at multiscale levels ranging from surface morphology to hydrophobicity and electric potential mapping in both air and liquid, mechanical wave propagation in polymeric films, and the dynamics of living cells. This multiparametric, multiscale approach provides opportunities for studying the emergent properties of atomic-scale mechanical and physicochemical interactions in a wide range of physical and biological networks.


Assuntos
Microscopia de Força Atômica/métodos , Animais , Camundongos , Miócitos Cardíacos/ultraestrutura , Nanotecnologia/métodos , Imagem Óptica/métodos , Polímeros/química , Relação Estrutura-Atividade , Propriedades de Superfície
13.
Adv Mater ; 30(50): e1801368, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30073715

RESUMO

Soft electronics are intensively studied as the integration of electronics with dynamic nonplanar surfaces has become necessary. Here, a discussion of the strategies in materials innovation and structural design to build soft electronic devices and systems is provided. For each strategy, the presentation focuses on the fundamental materials science and mechanics, and example device applications are highlighted where possible. Finally, perspectives on the key challenges and future directions of this field are presented.

14.
Sci Adv ; 4(3): eaar3979, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29740603

RESUMO

Ultrasonic imaging has been implemented as a powerful tool for noninvasive subsurface inspections of both structural and biological media. Current ultrasound probes are rigid and bulky and cannot readily image through nonplanar three-dimensional (3D) surfaces. However, imaging through these complicated surfaces is vital because stress concentrations at geometrical discontinuities render these surfaces highly prone to defects. This study reports a stretchable ultrasound probe that can conform to and detect nonplanar complex surfaces. The probe consists of a 10 × 10 array of piezoelectric transducers that exploit an "island-bridge" layout with multilayer electrodes, encapsulated by thin and compliant silicone elastomers. The stretchable probe shows excellent electromechanical coupling, minimal cross-talk, and more than 50% stretchability. Its performance is demonstrated by reconstructing defects in 3D space with high spatial resolution through flat, concave, and convex surfaces. The results hold great implications for applications of ultrasound that require imaging through complex surfaces.


Assuntos
Imageamento Tridimensional/instrumentação , Transdutores , Ultrassonografia/instrumentação , Desenho de Equipamento , Propriedades de Superfície
15.
Adv Mater ; 30(20): e1705992, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29611280

RESUMO

Organic-inorganic hybrid perovskites have demonstrated tremendous potential for the next-generation electronic and optoelectronic devices due to their remarkable carrier dynamics. Current studies are focusing on polycrystals, since controlled growth of device compatible single crystals is extremely challenging. Here, the first chemical epitaxial growth of single crystal CH3 NH3 PbBr3 with controlled locations, morphologies, and orientations, using combined strategies of advanced microfabrication, homoepitaxy, and low temperature solution method is reported. The growth is found to follow a layer-by-layer model. A light emitting diode array, with each CH3 NH3 PbBr3 crystal as a single pixel, with enhanced quantum efficiencies than its polycrystalline counterparts is demonstrated.

16.
Nat Biomed Eng ; 2(9): 687-695, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30906648

RESUMO

Continuous monitoring of the central-blood-pressure waveform from deeply embedded vessels, such as the carotid artery and jugular vein, has clinical value for the prediction of all-cause cardiovascular mortality. However, existing non-invasive approaches, including photoplethysmography and tonometry, only enable access to the superficial peripheral vasculature. Although current ultrasonic technologies allow non-invasive deep-tissue observation, unstable coupling with the tissue surface resulting from the bulkiness and rigidity of conventional ultrasound probes introduces usability constraints. Here, we describe the design and operation of an ultrasonic device that is conformal to the skin and capable of capturing blood-pressure waveforms at deeply embedded arterial and venous sites. The wearable device is ultrathin (240 µm) and stretchable (with strains up to 60%), and enables the non-invasive, continuous and accurate monitoring of cardiovascular events from multiple body locations, which should facilitate its use in a variety of clinical environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...